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1 Introduction

Financial intermediaries are exposed to interest rate risk. They have

multiple sources of exposure arising from cash flow differences across

balance sheet components as well as contractual or embedded options with

asymmetric payoff characteristics. Although intermediaries have a wide

range of asset and liability management tools available to hedge interest

rate risk, they do not fully insulate themselves from all potential changes in

interest rates for several reasons.1 Financial markets may be incomplete,

fully hedging may be prohibited by its cost, and carrying interest rate

risk may be a source of earnings.2 Thus, financial intermediaries carry

some residual exposure to interest rate risk, which could have significant

consequences for financial stability and macroeconomic outcomes in bad

states of the world (Holmstrom and Tirole, 1997; Brunnermeier and

Sannikov, 2014).

In this paper, we propose a new method to measure the time-varying

residual interest rate risk exposure of financial intermediaries using minute-
1Risk managers at financial institutions are expected to monitor and manage interest

rate exposures at prudent levels, but not fully eliminate the risk. Supervisors provide
detailed guidance on management practices and coordinate their standards. See, for
example, the Office of the Comptroller of the Currency (OCC) Revised Handbook March
2020, the Federal Deposit Insurance Corporation (FDIC) Letter on Financial Institution
Management of Interest Rate Risk 2010, the Federal Reserve Board (FRB) Supervisory
Manual on Interest Rate Risk, the National Association of Insurance Commissioners
(NAIC) Risk-Based Capital for Insurers Model Act, the OCC-FDIC-FRB Joint Policy
Statement on Interest Rate Risk 1996, and the Basel Committee on Banking Supervision
Guidance on Standards 2014.

2Even an established hedging strategy may be exposed to “basis risk”—that is, it
might lose its effectiveness.
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by-minute financial market data. We calculate the daily realized covariance

of high-frequency stock returns for those intermediaries and Treasury

security returns. We construct a conditional covariance by projecting out

aggregate stock market returns from stock returns and Treasury security

returns. We then introduce realized gamma as the ratio of the conditional

covariance to the daily realized conditional variance of Treasury security

returns. Realized gamma is a daily estimate of the sensitivity of an

individual firm’s stock price returns to realized changes in interest rates.

We calculate returns at five-minute intervals using every possible five-

minute grid point in a trading day, exploiting all available high-frequency

information as described in Zhang, Mykland and Aït-Sahalia (2005).

High-frequency data provide a consistent estimate of time-varying inter-

est rate risk, even when changes in financial institutions’ exposure are slow

moving. We carefully address well-known market microstructure concerns

associated with high-frequency financial market data in Section 2.1.1. A

feature of our realized volatility estimates is the ability to aggregate them

over time (Corsi, 2009). In practice, we can consistently estimate a measure

of longer-term interest rate risk over any horizon by averaging our daily

estimates. For example, in our empirical application described in Section 3,

we averaged the daily estimates over a period of two months.

We also propose a new statistical test of the daily residual interest

rate risk exposure of financial intermediaries. We conduct statistical
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inference on the realized gamma estimates by calculating asymptotically

valid confidence intervals using subsampling (Politis, Romano and Wolf,

1999). The essence of the subsampling method is to approximate the

sampling distribution of the daily realized gamma with the empirical

distribution generated by estimating the realized gamma on an exhaustive

set of intra-day subsamples.3 Although computationally intensive, the

method of subsampling behaves well under extremely weak, easily satisfied

assumptions.4 Our approach to statistical inference is crucial because

it is by definition impossible to know everything about each financial

intermediary’s proprietary risk management framework.

Our new method provides a time-varying measure of residual interest

rate risk exposure because it is based on financial intermediaries’ publicly-

traded equity values. As the owners of a financial intermediary, equity

investors are the ultimate bearers of its interest rate risk. Equity values

thus reflect intermediaries’ exposure to interest rates after they have

executed their interest rate risk management strategies. The correlation

of equity values with interest rates reveals market participants’ views on

the effectiveness of financial intermediaries’ hedging strategies in relation to

the changes in the interest rates that occurred. The measure is a reflection
3Our limiting concept is the length of the time interval between two stock price

observations going to zero. We provide the main theoretical results for our application
in Appendix B.

4By contrast, bootstrapping the confidence intervals would require showing the time-
series properties were preserved within samples or impose strong assumptions about the
data generating process.
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of the hedging strategy conditional on the actual changes in interest rates.

A measure of zero doesn’t necessarily mean that financial intermediaries

are fully hedged. That said, intuitively, the stock price of a financial

intermediary with fully hedged interest rate risk would be uncorrelated

with all possible changes in interest rates (Allen, 1993).

Note that we will not address the question of why financial intermedi-

aries bear interest rate risk. Importantly, we are not making any normative

statement about how much interest rate risk financial intermediaries could

or should carry. In particular, our notion of effectiveness does not imply

that intermediaries should aim for zero residual interest rate risk. Nor

does it imply that market participants think intermediaries should do so.

Rather, our measure derives from the compensation for the interest rate

risk borne by the ultimate owners of the intermediary, as in Allen (1993).

When ownership is obtained through traded equity, the equity market price

reflects that compensation.

Monitoring residual interest rate risk exposures is an important

component in analysts, policymakers, and supervisors’ evaluation of the

financial conditions of intermediaries. Interest rate risk exposures are

typically included as part of credit rating reports and investment analysis.

As part of their financial stability discussions, central bankers are attuned

to the potential effects on their decisions on financial intermediaries, e.g.,

Brainard (2022). Supervisors of financial institutions expect regular reports
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concerning interest rate risk management and exposures. Monitoring is

required because interest rates can change swiftly and significantly, with

large potential effects. The profitability of entire financial sector industries

has been threatened by interest rate exposures. For example, the life

insurance industry struggled to cope with the sharp rise in interest rates in

the late 1970s and early 1980s, when the Federal Reserve under Chairman

Volcker fought inflation (NAIC, 2013).

We apply our new method to publicly-listed U.S. life insurers during

the period from 2007 to 2022. Interest rate risk management is at the

heart of the modern life insurer business model because the duration of life

insurers’ insurance liabilities, such as life insurance policies and annuity

contracts, is typically much longer than the duration of the assets available

in the economy.5 This negative duration gap means that a decrease in

the interest rate increases the present value of a life insurer’s fixed-rate

liabilities faster than the present value of its fixed income assets, which

could lead to insolvency if left unmanaged. The same duration gap

also means that persistently low interest rates depress life insurers’ net

investment spread on new business and forces them to reinvest the proceeds

from maturing bonds into bonds paying lower coupon rates, which further

depresses their overall net investment spread and, in turn, adversely affects

their financial condition. In addition, explicit and implicit options on both
5For example, the duration of a typical life annuity is ten years, while the median

corporate bond duration is around 5 years.
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assets and liabilities contributes to life insurers’ interest rate risk. Because

the prospect of insolvency is incompatible with the sale of long-term life

and longevity insurance, state insurance regulations, or both, life insurers

must credibly manage interest rate risk.

We find that life insurer stock prices are largely uncorrelated with long-

term (10-year) Treasury interest rates. This suggests that life insurers’

interest rate risk management is effective most of the time. This finding

is comforting given some of the largest life insurers in the U.S. have been

managing interest rate risk for over a century. However, in some states of

the world, realized gamma is statistically significant, revealing that after

managing their interest rate risk—with liability driven investment, capital

structure, and derivatives—life insurers remain exposed to changes in long-

term interest rates in some states of the world.

We contrast our analysis of life insurance companies with an analysis

of publicly-listed property and casualty (P&C) insurance companies. P&C

insurers provide an ideal alternative to life insurers because the structure

of their business means that they are relatively less exposed to interest

rate risk. For example, the vast majority of P&C premiums are renewable

every year and, therefore, P&C insurers do not need to actively manage

a duration gap between their assets and insurance liabilities. Consistent

with this difference in business model, we find that life insurers are more

sensitive to changes in long-term interest rates than P&C insurers.
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We then show that a measure of the term premium—the compensation

for the risk associated with holding longer-term bonds—helps to explain

the difference between the estimated sensitivities of life insurers and P&C

insurers. We use the estimate of the term premium from the term structure

model of Adrian, Crump and Moench (2013). We control for the funding

cost of life insurers and a measure of the corporate credit return on life

insurers’ assets. Our finding likely reflects the outsized importance of

longer-term debt in life insurers’ investment portfolios. We use these results

to illustrate how our measure provides information about the impact that

rapidly changing interest rates may have on insurers.

Lastly, we show that our finding that life insurers’ interest rate risk

management is generally effective is not due to low long-term interest

rate volatility. We provide two alternative approaches to address the

potential endogeneity between realized gamma and long-term interest rate

volatility. Both approaches are based on the exogenous increase in interest

rate volatility that occurs on scheduled Federal Open Market Committee

(FOMC) meeting days.

1.1 Related literature

Our paper connects to three distinct strands of literature. First, our

method contributes to the high-frequency financial econometrics literature.

Conceptually, our method is an extension of the single-factor realized beta
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model of Andersen, Bollerslev, Diebold and Wu (2006) and Hansen, Lunde

and Voev (2014). We include a second right-hand side variable, that is

Treasury security returns, in the estimated regression specification. To

the best of our knowledge we are the first to introduce a second right-

hand side variable. Our computation of asymptotically valid standard

errors using the subsampling approach is unusual in the high frequency

financial econometrics literature because the approach is conservative and

computationally intensive. Our realized gamma estimates do not suffer

from bias due to non-synchronous trading—see, for example, Christensen,

Kinnebrock and Podolskij (2010) and Barndorff-Nielsen, Hansen, Lunde

and Shephard (2011)—since we use index data aggregated at the one-

minute frequency. Our choice of five-minute sampling frequency and

averaging immunizes our estimates from market microstructure noise

biases, as described in Section 2.1.1.

Second, our method relates to—but is distinct from—studies of interest

rate risk that measure the effects of realized changes in interest rates. These

studies differ from other interest rate risk assessments that use balance

sheet information to describe scenarios of potential effects associated with

hypothetical changes in interest rates, e.g., Möhlmann (2021). Other papers

that study actual changes in interest rates tend to focus on banks. Flannery

and James (1984) studies the correlation between bank stock prices and

interest rates using a similar regression model and weekly data. English,
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Van den Heuvel and Zakrajšek (2018) identify the response of bank stock

prices to FOMC interest rate shocks. Paul (2022) revisits the findings

of English et al. (2018) by decomposing the effect of monetary policy

surprises into changes in future expected short-term rates and changes

in term premium. Hoffmann, Langfield, Pierobon and Vuillemey (2018)

use supervisory bank balance sheet data to estimate interest rate risk and

study its determinants in the cross section. Vuillemey (2019) and Begenau,

Piazzesi and Schneider (2015) show that banks increase their exposure

to interest rate risk using derivatives. Most of these papers study low-

frequency data and, in some cases, attempt to identify interest rate shocks.

By contrast, we exploit the information in high-frequency data and we use

changes in interest rates rather than identified shocks.

Third, our paper adds to the extensive literature on risk management

of financial institutions—e.g., Froot, Scharfstein and Stein (1993); Froot

and Stein (1998). Our method is applicable to any financial intermediary.

We chose to focus on the interest rate risk of life insurers, as they have

received much less attention than, for example, banks. The theoretical

foundation for our application to life insurers comes from recent work

studying interest rate risk management at insurance companies (Foley-

Fisher, Narajabad and Verani, 2016; Verani and Yu, 2021). In these

papers, limited liability insurers manage the ex-ante risk of insolvency due

to future movement in the interest rate by choosing an optimal insurance
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price, asset portfolio, and capital structure. Our method is an ex-post

statistical test of the performance of insurers’ ex-ante interest rate risk

management strategy. As such, our analysis is closely related to empirical

work that measures the residual interest rate risk exposure of insurers

using a two-variable regression model of stock prices and low-frequency

data (Brewer III, Mondschean and Strahan, 1993; Berends, McMenamin,

Plestis and Rosen, 2013; Hartley, Paulson and Rosen, 2016; Ozdagli and

Wang, 2019; Sen, 2021; Koijen and Yogo, 2022; Huber, 2022). These

estimates are weighted averages of the underlying time-varying interest rate

risk parameter, where the weights depend on volatility that is potentially

time-varying. If the time-varying parameter is correlated with the time-

varying volatility, great care must be taken to avoid misspecifying the

errors (Hamilton, 2008). Any analysis that compares estimates across time

periods is subject to this concern. For example, we show in Appendix A

that estimates obtained through low-frequency rolling window ordinary

least squares (OLS) regressions are severely biased, inconsistent, and

potentially misleading.6 In contrast to our findings in this paper, incorrect

inference on the OLS estimates suggests that life insurers are sensitive to

any movement in long-term interest rates at almost all times in the post-

crisis period.
6To be sure, not all the papers cited in this paragraph provide estimates use rolling

windows, but all of them use low-frequency OLS. Some of the papers use stock prices
only as a motivation for subsequent analysis of insurer balance sheet measures of interest
rate risk.
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The rest of our paper is structured as follows: Section 2 sets out the

empirical framework for our estimation and explains how we construct our

standard errors using subsampling. Section 3 describes our application to

US life insurers, including institutional background and details on the data.

We summarize our main findings in section 3.3 and offer some concluding

remarks in section 4.

2 Methodology

2.1 A two-variable regression model

In this section, we introduce our new method to measure the residual

interest rate risk exposure of financial intermediaries. Let 𝑟𝑖 𝑗 𝑡 be the

continuously compounded stock return of financial intermediary 𝑖 indexed

to minute 𝑗 within day 𝑡. Let 𝑟𝑚 𝑗𝑡 be the continuously compounded return

on aggregate market 𝑚 and 𝑟𝑦 𝑗𝑡 be the continuously compounded return

on Treasury security 𝑦.

Our framework is a regression model with two right-hand side variables

using minute-by-minute financial market returns:

𝑟𝑖 𝑗 𝑡 = 𝛼𝑡 + 𝛽𝑡𝑟𝑚 𝑗𝑡 + 𝛾𝑡𝑟𝑦 𝑗𝑡 + 𝜖𝑖 𝑗 𝑡 (1)

where {𝛼𝑡 , 𝛽𝑡 , 𝛾𝑡} are day-specific coefficients estimated using within-day
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returns. Our regression with the restriction 𝛾𝑡 = 0 is well established in

the finance literature and is referred to as the one-factor capital asset

pricing model (CAPM). In the CAPM regression, the coefficient 𝛽𝑡 is

interpreted as a dynamic measure of the comovement of individual stock

returns with aggregate market or systematic returns.7 We extend the one-

variable CAPM regression to include a second right-hand side variable, that

is Treasury security returns.8

The time-varying 𝛾𝑡 coefficient estimates the sensitivity of an individual

firm’s stock price returns to high-frequency realized changes in Treasury

security returns. As Treasury security returns are inversely dependent on

changes in interest rates, 𝛾𝑡 provides an estimate of that firm’s interest rate

sensitivity.

We label our 𝛾𝑡 estimates realized gamma because our method

can also be cast in the nonparametric framework of realized variances

and covariances (Meddahi, 2002; Barndorff-Nielsen and Shephard, 2004;

Andersen, Bollerslev and Meddahi, 2004). Our estimates of daily gammas

are based on realized daily variances and covariances after conditioning on

the aggregate market returns. We first project out aggregate stock market
7A full discussion of the extensive literature studying time-varying 𝛽𝑡 and its

determinants is beyond the scope of this paper. See Fama and French (2004) for an
overview.

8To be sure, we are not assuming that the right-hand side variables in our regression
model are orthogonal. We are estimating the general equilibrium relationship between
the three variables in our regression, which is fully consistent with the standard one-
factor CAPM and yields an unbiased estimate of 𝛾𝑡 . Other papers that adopt a similar
approach include Fama and Schwert (1977) and Flannery and James (1984). We explore
the effect of an exogenous increase in long-term Treasury rate volatility in section 3.4.
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returns from stock returns and Treasury security returns by running two

auxiliary regressions for each day 𝑡:

𝑟𝑖 𝑗 𝑡 = 𝛼̂
1
𝑡 + 𝛽1𝑡 𝑟𝑚 𝑗𝑡 + 𝜖𝑖 𝑗 𝑡 , (2)

𝑟𝑦 𝑗𝑡 = 𝛼̂
2
𝑡 + 𝛽2𝑡 𝑟𝑚 𝑗𝑡 + 𝜖𝑦 𝑗𝑡 . (3)

The residuals from these auxiliary regressions {𝜖𝑖 𝑗 𝑡 , 𝜖𝑦 𝑗𝑡} are, respectively,

the within-day conditional stock returns and Treasury security returns.

The daily realized covariance of each financial intermediary’s conditional

stock returns and Treasury security conditional returns is given by:

𝜈𝑖,𝑦,𝑡 =
∑︁
𝑗

𝜖𝑖 𝑗 𝑡 · 𝜖𝑦 𝑗𝑡 .

And the daily realized variance of conditional Treasury security returns is

given by:

𝜈𝑦,𝑡 =
∑︁
𝑗

𝜖2𝑦 𝑗𝑡 .

So we can define realized gamma as the ratio of the conditional covariance

to the daily realized conditional variance of Treasury security returns:

𝛾𝑡 =
𝜈𝑖,𝑦,𝑡

𝜈𝑦,𝑡
. (4)

The 𝛾𝑡 estimates by equation 1 and equation 4 are identical by what

14



is commonly-known as the Frisch-Waugh-Lovell Theorem (Davidson and

MacKinnon, 1993, Section 1.4). However, care must be taken with

interpretation. The simple regression shown in equation 1 yields a

consistent estimate of the ex-post realized gamma coefficient. That said,

obtaining asymptotically valid standard errors is not a simple process, as

we will describe in Section 2.2.

2.1.1 Addressing market microstructure noise

Controlling for market microstructure noise that is prevalent in high

frequency financial market data is an important issue (Aït-Sahalia and

Yu, 2009). Microstructure noise naturally arises from a variety of features

built in to financial market trading, including prices bouncing from bids

to asks, variation in the size of trades, adjustment to new information

contained in prices, order flow dynamics, and inventory management.

Following Aït-Sahalia and Mykland (2009), we address the presence of

market microstructure noise without discarding observations from our

samples.

We employ two well-established techniques to mitigate concerns that

market microstructure noise is clouding our ability to construct estimators

and draw inference from high-frequency data. First, we calculate returns at

five-minute intervals as their use as a benchmark for estimators generally

outperforms all alternatives (Liu, Patton and Sheppard, 2015). We use
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every possible five-minute grid point in a trading day to exploit all available

high-frequency information given the data structure as described in Zhang

et al. (2005).9 Second, we filter all of our returns time series through

AR(1) processes estimated separately for each day. That is, we take the

raw returns 𝑟𝑘 𝑗𝑡 for 𝑘 ∈ {𝑖, 𝑦, 𝑚} and estimate 𝑟𝑘, 𝑗 ,𝑡 = 𝜌 + 𝜙𝑟𝑘, 𝑗−1,𝑡 + 𝜀𝑘, 𝑗 ,𝑡 for

each day 𝑡. We then use the residuals 𝜀𝑘, 𝑗 ,𝑡 as our returns time series that

has filtered out market microstructure noise.

2.2 Statistical inference

A key principle for our new methodology is to impose minimal assumptions

about the data generating process. This principle underpins our use

of high-frequency data to estimate nonparametrically the time-varying

correlation between interest rates and financial intermediaries’ stock prices.

Similarly, we follow this principle when we consider what standard errors

are appropriate for valid inference. We derive asymptotically valid standard

errors without imposing undue structure on the time series processes. Our

choice of standard errors is a crucial part of our approach to estimate

interest rate risk, as the data generating process underpinning our realized

gamma estimates is nonstandard. For example, we use rolling five-minute

windows to construct our time series of returns.
9Our approach is identical to the method commonly referred to as “subsampling”

in high-frequency financial econometrics. We avoid using the term here to prevent
confusion with the concept of “subsampling” that we use to construct asymptotically
valid standard errors.
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We adopt the subsampling methodology as it is a valid technique

in extremely general cases (Politis et al., 1999).10 The basic idea of

subsampling in a time series context is to approximate the sampling

distribution using all possible subsets of the time series. Theorem 4.3.1 from

Politis et al. (1999), which we reproduce in Appendix B for completeness,

shows that we can derive asymptotically valid confidence intervals for

the daily estimator 𝛾𝑡 . In addition, we can draw asymptotically valid

inference about the true 𝛾𝑡 by exploiting the familiar duality between

the construction of confidence intervals for 𝛾𝑡 and the construction of

hypothesis tests about 𝛾𝑡 . We can test the null hypothesis that our estimate

of the daily 𝛾𝑡 is statistically different from 0. That is, under the null,

financial intermediaries are hedged against interest rate risk as their stock

prices are not sensitive to movements in interest rates.

Our algorithm for hypothesis testing uses within-day observations to

construct subsamples. We follow Politis et al. (1999) and evaluate statistics

on an exhaustive set of subsamples of size 𝑏 < 𝑛 that are created from the

original daily sample of size 𝑛. We estimate the distribution of this statistic

after a suitable normalization for each day in our sample. Note that our

limiting concept is that the number of observations in a day approaches

infinity. To be clear, each subsample contains consecutive observations from
10Alternative methodologies based on the bootstrap technique could be devised, but

they typically require additional assumptions, such as a finite fourth moment of the
model residuals (Paparoditis and Politis, 2009).
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the original time series sample. Therefore, each subsample of size 𝑏 is drawn

without replacement from the true data generating process. We calculate

a confidence interval for each of the daily 𝛾𝑡 using subsampling following

Politis et al. (1999) under the assumption that the errors are asymptotically

stationary. Asymptotic stationarity is a weak condition that means, for

example, the errors could follow an 𝐴𝑅(1) process with autocorrelation

parameter strictly less than 1 and heteroskedastic innovations. The essence

of the subsampling method is to approximate the sampling distribution of

the (normalized) 𝛾𝑡 estimate with the empirical distribution generated by

its subsample counterpart.

As we have a large daily sample size (roughly speaking, 𝑛 =

390 observations per day), the choice of subsample size (𝑏) should not have

a large effect on the empirical distribution of our statistic. Nevertheless,

we need to choose the size of our subsamples. We follow the algorithm

proposed by Politis et al. (1999) in section 9.3.3. Let 𝑏𝑡 be the subsample

size for day 𝑡, which yields a confidence interval {𝐼𝑏𝑡 ,𝑙𝑜𝑤, 𝐼𝑏𝑡 ,ℎ𝑖𝑔ℎ}. We

construct a discrete grid of possible values 𝑏𝑡𝑠 ∈ {𝑏𝑡
𝑠𝑚𝑎𝑙𝑙

, ..., 𝑏𝑡
𝑙𝑎𝑟𝑔𝑒

}. For

each subsample size 𝑏𝑡𝑠 we consider a perturbation of small integer 𝑘 around

the subsample size and calculate a measure of variation in the confidence

interval:

𝑉𝐼𝑏𝑡𝑠 ≡ var
(
𝐼𝑏𝑡𝑠−𝑘,𝑙𝑜𝑤, ..., 𝐼𝑏𝑡𝑠+𝑘,𝑙𝑜𝑤

)
+ var

(
𝐼𝑏𝑡𝑠−𝑘,ℎ𝑖𝑔ℎ, ..., 𝐼𝑏𝑡𝑠+𝑘,ℎ𝑖𝑔ℎ

)
.
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Finally, we pick the value of 𝑏 that delivers stable confidence intervals for

the most number of days in the entire sample:

𝑏 = argmax𝑏
𝑇∑︁
𝑡=0

𝟙(𝑏𝑡∗ = 𝑏) where 𝑏𝑡∗ = argmin𝑏𝑡𝑠𝑉𝐼𝑏𝑡𝑠 .

Having determined the ‘optimal’ subsample size, we construct the

empirical distribution of the normalized 𝛾𝑡 estimate for each day 𝑡. We

use empirical distributions to obtain confidence intervals, which allow us

to make inference about the statistical significance of each 𝛾𝑡 . With our

new methodology in hand, we can turn to a specific application and data.

3 Application to U.S. life insurers

3.1 Institutional background

Life insurers play a major role in the financial system, holding $6 trillion

in total assets in their general accounts, of which roughly $3 trillion are in

corporate and foreign fixed income securities (Federal Reserve release Z.1

table L.116.g). Their overall business model consists of earning a spread

between the yield they owe on their insurance liabilities and the yield they

earn on the assets backing those liabilities. Life insurers write liabilities

that are traditionally long-term, illiquid, and make fixed payments, such

as fixed annuities. Life insurers tend to invest their premiums primarily
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in fixed rate corporate debt, in an effort to match their asset and liability

cash flows and illiquidity profile and to offer a competitive return to policy

holders.

Like other financial intermediaries, life insurers have multiple sources of

exposure to interest rate risk. A key underlying reason for their exposure is

that the duration of insurance liabilities is typically much longer than the

duration of assets available in the economy. In the U.S., the typical duration

of life insurance liabilities is 15–20 years (Huber, 2022). By contrast, in

most countries, long-term fixed coupon bonds with more than two-year

maturity do not exist (Gajek and Ostaszewski, 2004). Even in the U.S.,

which has the largest corporate bond market in the world, the supply of

long-duration corporate bonds paying fixed interest rates is considerably

smaller than the size of the life insurance industry (Verani and Yu, 2021).

This means that, in practice, it is difficult for life insurers to hedge interest

rate risk by investing in assets that have the same duration and greater

cash flow variability than their insurance liabilities i.e., they cannot directly

implement the classical immunization strategy of Redington (1952).

Convexity—the effect of changing interest rates on the duration—of life

insurer assets and/or liabilities also contributes to interest rate risk. One

well-known source of convexity stems from options on financial contracts.

For life insurers, the option for corporate bond issuers to call their bonds

creates convexity on the asset side of their balance sheet. Likewise,
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policyholders may have the option of surrendering their life insurance

products–perhaps for some cost–that creates convexity on the liability side

of the balance sheet. The combination of these options creates a short

straddle position for investors in the life insurer, which means they suffer

when volatility is high (Babbel and Stricker, 1987).11

A natural way for life insurers to manage their interest rate risk consists

of choosing a price for their insurance liabilities, an asset portfolio to back

their insurance liabilities, and a capital structure to prevent insolvency

along different paths for interest rates (Verani and Yu, 2021). For example,

life insurers can hedge interest rate risk by charging a markup on the

actuarially fair cost of their insurance products. The present value of the

markup adds to the insurer’s ‘net worth’. Net worth allows the insurer to

close its duration gap by financing bonds whose present value is greater

than the present value of its insurance liabilities. Or, put differently, net

worth acts as precautionary savings and helps cushion the effect of interest

rate changes that disproportionately affect the value of the insurance

liabilities.12

Large and sophisticated life insurers also manage interest rate risk by

adding net-positive duration to their balance sheets synthetically using

derivatives (Sen, 2021; Verani and Yu, 2021) and nontraditional lines of
11Briys and de Varenne (1997) provide an alternative formulation for the investor

straddle position in which insurance liabilities are more convex than assets.
12Net worth is not to be confused with what the industry calls reserves, which is the

value of insurance liabilities.
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business (Foley-Fisher et al., 2016; Foley-Fisher, Narajabad and Verani,

2020), which amounts to using leverage instead of net worth to close the

duration gap. For example, life insurers can add positive duration to their

balance sheet by entering into a long-term fixed-for-float interest rate swaps

or by financing long-term fixed interest rate assets with nontraditional

liabilities such as overnight securities lending cash collateral (Gissler, Foley-

Fisher and Verani, 2019; Foley-Fisher et al., 2016) and funding agreement-

backed short-term funding (Foley-Fisher et al., 2020). All these interest

rate hedging strategies amount to closing the insurer’s natural negative

duration gap by either directly or synthetically financing fixed-maturity

assets with short-term floating rate debt.

Nevertheless, insurers typically carry residual interest rate risk after

they have implemented their hedging strategies. Investors in the insurers—

either the policyholders in the case of mutual insurers or shareholders in

the case of publicly-listed insurers—provide additional risk-bearing capital

and receive compensation for bearing the insurer’s residual interest rate

risk (Allen, 1993). When investment takes place through traded equity,

the market price for the equity reflects the interest rate risk compensation.

One real-world example when the residual interest rate risk carried

by life insurers was realized occurred in the early 1980s. At that time,

the Federal Reserve sharply increased short-term interest rates amid

persistently high inflation. Life insurers’ financial condition deteriorated as
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policyholders surrendered their claims or took out policy loans in search of

higher interest rates on alternative saving vehicles (Briys and de Varenne,

2001). Life insurers responded by rewriting existing business at a loss

and selling new products that offered higher-than-current long-term rates

(negative spreads) (NAIC, 2013). While locking in huge losses—eroding

their net worth—they avoided even greater losses they would have incurred

had they sold their fixed income assets at far-below costs given the rise

in current rates. The surge in short-term interest rates occurred after a

relatively long period of low interest rate volatility, making these sharp

rises largely unexpected. The significance of the episode is underscored

by subsequent efforts to develop new tools for managing interest rate risk

(Doffou, 2005).

Adverse scenarios such as the early 1980s create a need for researchers

and policymakers to monitor and assess the effects of rising interest rates

on life insurers. However, they do not have access to the complete set

of balance sheet information needed to precisely identify the effectiveness

of life insurers’ interest risk management and their residual interest rate

risk. For example, information about the interest rate sensitivity of life

insurance liabilities is difficult to gauge, although it is easier in some non-

U.S. jurisdictions (Huber, 2022; Möhlmann, 2021; Kirti, 2017; Domanski,

Shin and Sushko, 2017). Furthermore, it is hard to incorporate balance

sheet information about the interest rate sensitivity of derivative positions,
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off-balance sheet liabilities (such as those in offshore captive reinsurers),

and nontraditional liabilities.

To overcome this problem, researchers turned to analyzing the

sensitivity of life insurer stock returns to changes in long-term interest

rates. An insurer’s equity valuations reflect the market price for its

residual interest rate risk, after it has implemented its hedging strategies.

That is, the ex-post effectiveness of life insurers’ management of ex-ante

interest rate risk.13 To the best of our knowledge, this approach was

first adopted by Brewer III et al. (1993). To assess the dynamics of

interest rate risk exposure, some papers run OLS on rolling windows of

stock returns e.g., Hartley et al. (2016). Although conceptually valid,

the OLS implementation can lead to biased estimates in the presence of

heteroskedasticity.14 In Appendix A, we show the bias is extremely large

by imposing some structure on the data generating processes. We will now

apply our preferred methodology described in Section 2 to obtain consistent

estimates without imposing such structure.
13Here, again, the term ‘effectiveness’ should not be taken to imply that investors think

insurers should target any particular level of interest rate risk. Rather, it’s investors’
assessment of the effect that actual interest rate changes had on the net worth of the
insurer.

14Brewer III, Carson, Elyasiani, Mansur and Scott (2007) recognised this concern and
allowed for time-varying volatility in a GARCH-M process.
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3.2 Data

All the price data for our empirical application to life insurers come

from Refinitiv. The underlying data are timed to the microsecond and

recorded from data feeds covering both over-the-counter and exchange

traded instruments on more than 500 trading venues and third parties. We

use a preprocessed version of the underlying data aggregated by Refinitiv to

a minutely frequency using the last trade during each minute. We construct

the data so as to follow the previous tick method, that is, if there are no

transactions during a specific minute, the last transaction is used.

The dataset identifier for each dataseries typically combines a ticker

with a code indicating the primary trading market. For example, MetLife’s

identifier is MET.N as it trades on the New York Stock Exchange. The

list of the individual insurer identifiers and their mapping to the life and

P&C insurers used in our analysis is provided in Table 1. Column 2 of

Table 1 shows the insurers included in each index. Our list of publicly-listed

life insurers almost completely overlaps with the list of “publicly traded

U.S. variable annuity insurers” used by Koijen and Yogo (2022). This is

not surprising because virtually all large listed life insurers offer variable

annuities contracts at some point in the sample period.15 In addition,

our analysis uses Standard and Poor’s S&P500 index as our measure of the
15As we will discuss in Section 3.4, this means that it is not possible to attribute the

residual interest rate risk exposure to variable annuities.
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aggregate market. The identifier for the index is .SPX. We also use Refinitiv

evaluated prices for 10-year Treasury securities. The identifier for the series

is US10YT=RRPS. Evaluated prices contain information from actual trades,

quotes, and other sources within a model-based methodology.

Table 1: Mapping insurance groups to identifiers. This table shows
the insurance groups that we use in our empirical application, with their
respective NAIC Group codes, and identifiers.

Name Code Life/P&C Identifier Ticker Notes

Alleghany Group 501 P&C Y.N Y
American Financial Group 84 P&C AFG.N AFG
American Intl Group, Inc. 12 Life/P&C AIG.N AIG
Assurant, Inc. 19 Life/P&C AIZ.N AIZ
The Allstate Corporation 8 Life/P&C ALL.N/BK.N ALL/BX Identifier change for Life in 2021
Ameriprise Financial, Inc. 4 Life AMP.N AMP
American National Financial Group 408 Life ANAT.OQ ANAT
Apollo Global Management, Inc. 4734 Life ATH.N/APO.N ATH/APO Identifier change in 2022
Brighthouse Financial, Inc. 4932 Life BHF.OQ BHF
Berkshire Hathaway Inc. 31 P&C BRKb.N BRK.B
Chubb Ltd. 626 P&C ACE.N/CB.N ACE/CB Identifier change in 2016
Cigna Health Group 901 Life CI.N CI
Cincinnati Financial Corporation 244 P&C CINF.OQ CINF
CNA Financial Corporation 218 P&C CNA.N CNA
CNO Financial Group 233 Life CNO.N CNO
Erie Insurance Group 213 P&C ERIE.OQ
Equitable Holdings, Inc. 4965 Life EQH.N EQH
FBL Financial Group Inc. 513 Life FFG.N FFG Ceased trading in 2021
Fidelity and Guaranty Life 4731 Life FGL.N FGL Ceased trading in 2017
Fidelity National Financial, Inc. 670 Life FNF.N FNF
Genworth Financial, Inc. 4011 Life GNW.N GNW
Hanover Insurance Group, Inc. 88 P&C THG.N THG
The Hartford Fin. Svcs Group, Inc. 91 Life/P&C HIG.N HIG Remove identifier from Life in 2018
Horace Mann Group 300 Life HMN.N HMN
Kansas City Life Insurance Group 588 Life KCLI.OQ KCLI Delisted in 2015
Kemper Corporation Group 215 P&C KMPR.N KMPR
Lincoln National Corporation 20 Life LNC.N LNC
Mercury General Group 660 P&C MCY.N MCY
Markel Corporation Group 785 P&C MKL.N MKL
MetLife, Inc. 241 Life MET.N MET
Manulife Financial Corporation 904 Life MFC.TO MFC
Nationwide Corporation Group 140 Life NFS.N NFS Ceased trading in 2008
The Phoenix Companies, Inc. 403 Life PNX.N PNX Ceased trading in 2016
Primerica Group 4750 Life PRI.N PRI
Principal Financial Group, Inc. 332 Life PFG.OQ PFG
Protective Life Corporation 458 Life PL.N PL Ceased trading in 2015
The Progressive Corporation 155 P&C PGR.N PGR
Prudential Financial, Inc. 304 Life PRU.N PRU
Selective Insurance Group 88 P&C THG.N THG
Symetra Financial Corp. 4855 Life SYA.N SYA Ceased trading in 2016
The Travelers Companies, Inc. Group 3548 P&C TRV.N TRV
Voya Financial, Inc. 4832 Life VOYA.N VOYA
W. R. Berkley Corporation 98 P&C BER.N/WRB.N BER/WRB Identifier change in 2008

We use minutely data for each trading day beginning at 9:30am
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through 4pm.16 Except for 9:30am, we use closing prices recorded for

each minute. For 9:30am, we use the opening price of 9:31am to avoid

concerns about jumps following overnight information and trading. We

calculate five-minute log returns of all time series using every possible

five-minute grid point in a trading day. That is, we calculate the

returns 𝑙𝑛(𝑝𝑖, 𝑗 ,𝑡) − 𝑙𝑛(𝑝𝑖, 𝑗−5,𝑡) for each day 𝑡, data series 𝑖, and all 𝑗 ∈

{9.35𝑎𝑚, 9.36𝑎𝑚, · · · , 3.59𝑝𝑚, 4.00𝑝𝑚}.

We construct high-frequency price indexes separately for life insurers

and P&C insurers, weighting each individual insurer’s intraday market

price by its end-of-day market capitalization. We obtain daily data on

market capitalization from the Center for Research in Security Prices

hosted by Wharton Research Data Services. Figure 1 shows the life insurer

index as a red solid line and the P&C insurer index as a dotted blue

line. The dotted blue line lies above the red solid line as P&C insurers

have generally outperformed life insurers in the post-crisis low interest rate

environment.

Table 2 shows summary statistics for the high-frequency data used in

our analysis. Column 1 shows that the first day that data are available

is different for each of our variables. The S&P500 Index is earliest

available, while our high frequency data on long-term Treasury bond prices

(‘US10YT’) begin only in 2007. Our indexes of large life and P&C insurers
16We exclude holidays, weekends, emergency closures, and partial trading days.
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Figure 1: Insurer price indexes. Each line is a weighted average
high-frequency price for large publicly-traded insurers listed in Table 1.
The weights for each series are the daily market capitalization of insurers.
Source: Authors’ calculations based on data from Refinitiv and the Center
for Research in Security Prices.
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stock prices also begin in 2007. By construction, our sample ends on

October 31, 2022. In addition to the first date available, we report the

number of days, and the total number of minutely five-minute returns in our

data. We also report that there are no zero returns in our data, alleviating

concerns about downward bias in our estimates due to zero returns (Bandi,

Kolokolov, Pirino and Renò, 2020; Kolokolov and Renò, 2023). Across

these returns, we report the mean, median, standard deviation, percentiles,

and higher-order moments for each time series. Life insurers’ returns have

a higher standard deviation than P&C insurers, but the kurtosis of life

insurers’ returns is far lower.

Table 2: Summary statistics. For each returns series in our sample,
the table shows the first observation date, the number of days, the number
of five-minute returns, the number of returns equal to zero, as well as
the mean, median, standard deviation, percentiles, skewness, and kurtosis.
The statistics reported in columns 6 through 10 are multiplied by 1𝑒+4 for
legibility. Source: Authors’ calculations based on data from Refinitiv and
the Center for Research in Security Prices.

Series First date No. days No. obs. #Zeroes Mean Median Std. dev. p25 p75 Skew. Kurt.

S&P500 2000-01-03 5,768 2,218,825 0 -0.01 0.05 10.74 -4.06 4.11 -0.04 38.74
US10YT 2007-04-10 3,961 1,524,682 0 0.01 0.00 3.91 -1.67 1.70 0.99 80.66
Life 2007-01-03 3,996 1,533,761 0 -0.01 0.06 16.55 -5.76 5.79 0.44 35.25
P&C 2007-01-03 3,996 1,533,761 0 0.02 0.03 10.44 -4.00 4.02 2.06 147.25

3.3 Results

In this section, we apply the methodology laid out in Section 2 to the data

described in the previous section. Panel A of Figure 2 shows the daily
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point estimate of realized gamma for life insurers, and Panel B of the same

figure shows the daily point estimate of realized gamma for P&C insurers.

Both panels exhibit volatility, which is a well-known feature of time-varying

coefficients estimated using realized variances and covariances (Hansen et

al., 2014). Nevertheless, life insurers’ realized gamma evidently has a higher

level of volatility than P&C insurers’.

Figure 2: Daily realized gammas. The panels show daily realized
gammas for life insurers and P&C insurers from 2007 through to the end
of 2022. Source: Authors’ calculations based on data from Refinitiv and
the Center for Research in Security Prices.

We obtain confidence intervals from the empirical distributions, which

are estimated for each day. Table 3 shows the results from applying the

algorithm described in subsection 2.2 to determine the block size. While

any block size satisfying the conditions of Theorem B.1 is valid, the ideal
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Table 3: Optimizing block size. Each of columns 2-4 shows the number
of days on which the block size (column 1) produces the most stable,
i.e. least variable, confidence intervals. The measures of variation used
in columns 2 and 4 is the standard deviation, while columns 3 and 5
use the difference between the minimum and the maximum values. The
row with the highest count of days reveals the ideal block size for life
insurers (columns 2-3) and P&C insurers (columns 4-5). Source: Authors’
calculations based on data from Refinitiv and the Center for Research in
Security Prices.

Block Life P&C
size (%) Std. dev. Min-max Std. dev. Min-max

15 481 475 519 513
20 419 418 381 379
25 992 1000 988 995
30 676 673 702 700
35 597 594 618 615
40 472 480 452 454
45 418 415 395 399

block size is the one that produces the most stable i.e., least variable,

confidence intervals given a small perturbation in the size of the block.17

Each of columns 2-4 shows the number of days on which the block size

(column 1) produces the most stable confidence intervals. The measure of

variation used in columns 2 and 4 is the standard deviation, while columns 3

and 5 use the difference between the minimum and the maximum values.

The row with the highest count of days reveals the ideal block size for

life insurers (columns 2-3) and P&C insurers (columns 4-5). For both life

insurers and P&C insurers, the optimal block size is 25 percent of the daily
17Note that there is no reason to expect variation across grid points to follow a

monotonic function or have a global optimum (Politis et al., 1999).
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observations, corresponding to about 100 consecutive observations in each

block and about 300 points in the empirical distribution. These relatively

large values alleviate concerns about the power of the test.

We average our daily estimates using a rolling window of two months, to

obtain a consistent estimate of interest rate risk over a longer horizon.18 We

construct smooth series for both the point estimates of realized gammas and

the confidence intervals. Panels A and B in Figure 3 show the smoothed

time series. The red horizontal lines represent the sample means of the

respective series.

The smoothed time series reveal that realized gamma for life insurers is

statistically significant on only 1,261 days, equivalent to roughly 32 percent

of the sample. Realized gamma is always negative whenever it is

statistically significant, which means that life insurers would benefit from

higher long-term interest rates. For the majority of our sample, life insurer

stock prices are uncorrelated with long-term interest rates. This suggests

that life insurers’ interest rate risk management is effective most of the

time. These results should not be interpreted as a normative assessment

of life insurers’ interest rate risk management, neither by us nor by equity

market participants. The measure is a reflection of how actual changes in

interest rates affected—or did not affect—equity investors in life insurers,

who expect compensation for bearing interest rate risk.
18A feature of our realized volatility estimates is the ability to aggregate them over

time (Corsi, 2009).
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Figure 3: Smoothed daily realized gammas. The panels show daily
realized gammas averaged using a rolling window of two months for life
insurers and P&C insurers from 2007 through to the end of 2022. The
shaded region in both panels represents the 90 percent confidence intervals
for each daily estimate. The underlying data are shown in Figure 2. The
red horizontal lines represent the sample means of the respective series.
A negative realized gamma means that insurers would benefit from higher
long-term interest rates. Source: Authors’ calculations based on data from
Refinitiv and the Center for Research in Security Prices.
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The time series also reveal that life insurers are more sensitive to interest

rate changes than P&C insurers. In contrast to life insurers, realized

gamma for P&C insurers is significant on only 705 days (about 18 percent

of the sample). Like life insurers, realized gamma for P&C insurers is

always negative whenever it is statistically significant. This finding could

be interpreted as evidence that P&C insurers carry less residual interest

rate risk, or as evidence that life insurers are exposed to different kinds of

interest rate risk. In the next section, we offer some support for the latter

interpretation by analyzing individual components of long-term interest

rates.

3.4 Analysis

3.4.1 When is life insurer hedging not effective?

In this section, we study macroeconomic variables during periods when

realized gamma is statistically significant. Our findings help to explain why

life insurers’ realized gamma is more often statistically significant that P&C

insurers’ realized gamma. While we offer an interpretation of our findings,

we do not claim causal identification, as we recognize that long-term yields

are a general equilibrium outcome of supply and demand (Schneider, 2022).

Life insurers’ interest rate sensitivity is potentially endogenous to their

demand for compensation to hold longer-term debt and, as we noted earlier,
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life insurers are important investors in the long-term debt market. As

many macroeconomic variables are unavailable at intraday frequencies, all

the analysis in this section is conducted at a daily frequency. In an ideal

empirical experiment, we would use intraday data to analyze the force(s)

behind the results described in the previous section. However, we do not

know of any high-frequency measures of the variables described below.

We focus on three key variables based on Verani and Yu (2021), who

showed that the relative cost of hedging interest rate risk is determined by

the long-term investment grade bond spread relative to life insurers’ cost

of funding. As measures of the return on life insurers’ long-term assets, we

use the term premium and Moody’s Baa-Aaa seasoned corporate spread.19

We use the term structure model of Adrian et al. (2013) to decompose long-

term yields and obtain an estimate of the term premium. While the term

premium contributes to the slope of the yield curve, it is more specifically

the component that compensates investors for holding longer-term debt

instead of rolling over short-term debt. In addition to these measures of

asset returns, we use the ICE BoA Single-A U.S. corporate index option-

adjusted spread as a proxy for life insurers’ average cost of funding because

life insurers are rated around A. Summary statistics for all the variables
19The corporate bonds used to construct this spread all have at least 20 years of

maturity. The yield on Aaa-rated corporate bonds with at least 20 years of maturity is
a quasi-risk free benchmark. Under state insurance regulation, corporate bonds rated
by Moody’s to be Baa or higher are designated as NAIC 1 and uniformly attract the
lowest statutory risk-based capital charge.
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used in this analysis are provided in Appendix C.

We construct a binary variable that takes the value 1 if the estimated

realized gamma (𝛾𝑖𝑡) is statistically significant on day 𝑡 for insurer type

𝑖 ∈ {Life, P&C}, and takes the value 0 otherwise. We then estimate a

linear probability model using as independent variables the term premium

(𝑇𝑃𝑡) estimates from Adrian et al. (2013), the Moody’s Baa-Aaa seasoned

corporate spread (𝐵𝑎𝑎 − 𝐴𝑎𝑎𝑡), and a measure of the funding cost of life

insurance companies (𝐹𝐶𝑡) that is the ICE BoA Single-A U.S. corporate

index option-adjusted spread. In more technical terms, we estimate:

𝑃(𝟙(𝛾𝑖𝑡 < 0) |𝑇𝑃𝑡 , 𝐵𝑎𝑎 − 𝐴𝑎𝑎𝑡 , 𝐹𝐶𝑡) = 𝛼𝑖 + 𝛽1𝑖 𝑇𝑃𝑡 + 𝛽2𝑖 𝐵𝑎𝑎 − 𝐴𝑎𝑎𝑡 + 𝛽3𝑖 𝐹𝐶𝑡

where 𝑃(𝟙(𝛾𝑖𝑡 < 0) |𝑇𝑃𝑡 , 𝐵𝑎𝑎 − 𝐴𝑎𝑎𝑡 , 𝐹𝐶𝑡) is the predicted probability that

𝛾𝑖𝑡 < 0 given 𝑇𝑃𝑡 , 𝐵𝑎𝑎 − 𝐴𝑎𝑎𝑡 , 𝐹𝐶𝑡 , and a linear functional form.

The results are shown in Table 4 where we report the coefficient

estimates and standard errors in parentheses. Column 1 shows the bivariate

relationship between the term premium and the statistical significance of

realized gamma for life insurers. Columns 2-4 provide the main result

under a range of standard error estimates, as indicated at the bottom of

the table. HC are heteroskedasticity consistent standard errors, HAC are

heteroscedasticity and autocorrelation consistent standard errors, and NW

are Newey-West standard errors. The dependent variable in column 5 is a

36



binary variable for statistical significance of P&C insurers’ realized gamma.

This column acts as a placebo test of the main result for life insurers: The

key variables we focus on for life insurers are not statistically important for

P&C insurers, consistent with our prior expectations.

Noting again that the results are not causal, the estimates nevertheless

suggest that there is a strong economic relationship between the variables,

in addition to the statistical significance indicated in the table. We use

as a benchmark for the economic effects the 32 percent unconditional

probability that realized gamma for life insurers is statistically significant

(see Table 6 in Appendix C). A one standard deviation increase in the

term premium, which compensates investors for holding longer-term debt,

reduces the probability that realized gamma for life insurers is statistically

significant by about 17 percentage points—equivalent to about half of

the unconditional probability that realized gamma for life insurers is

statistically significant. A one standard deviation increase in Moody’s Baa-

Aaa seasoned corporate spread reduces the probability that realized gamma

for life insurers is statistically significant by about 24 percentage points.

And a one standard deviation increase in the ICE BoA Single-A U.S.

corporate index option-adjusted spread raises the probability that realized

gamma for life insurers is statistically significant by about 28 percentage

points.

Our analysis provides support for the view that a flattening yield curve
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can drive realized gamma below zero. This can be seen, for example,

around September 2019 when short-term interest rates rose and the 10-

year Treasury yield fell. Similarly, our findings chime with the broad

consensus that an upward shift of the entire yield curve is generally good for

life insurers. For example, realized gamma remained statistically close to

zero during the rapid rise in short-term interest rates that occurred as the

Federal Reserve tightened monetary policy in 2022. Our measure suggests

that market participants focused on the positive effect on life insurers’

profitability from rising long-term interest rates and widening spreads

on long-term investment grade bonds. In summary, our realized gamma

measure of stock price sensitivity to long-term interest rates serves as a

useful barometer for market sentiment about the effectiveness of insurers’

interest rate risk management.

3.4.2 Is realized gamma low due to interest rate volatility?

Column 6 of Table 4 shows that the daily realized volatility of 10-year

Treasury security returns is not correlated with the statistical significance

of realized gamma. This finding should be intuitive, as we are estimating

realized gamma conditional on intraday 10-year Treasury security returns,

but is important to emphasize: It means life insurers’ interest rate risk

management is generally effective not as a consequence of generally low

interest rate volatility. In this section, we provide further evidence for this
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key result.

We provide additional tests as we recognize the potential endogeneity

of long-term interest rate volatility and realized gamma. Life insurers

are important investors in the long-term debt market, as we noted above.

Their willingness to lend at long terms may simultaneously affect their own

sensitivity to long-term interest rates and long-term interest rate volatility.

We address the potential endogeneity with a source of plausibly exogenous

variation in long-term interest rate volatility.

Scheduled Federal Open Market Committee (FOMC) meeting days are

a well-known source of volatility in interest rates, that is sometimes used as

a exogenous source of variation (Rigobon and Sack, 2004; Foley-Fisher and

Guimaraes, 2013).20 FOMC meeting days are exogenous to the supply-side

variables that give rise to endogeneity concern in our setting. We exploit

this source of exogenous variation in two ways. First, we use scheduled

FOMC meeting days as an instrumental variable (IV) to obtain exogenous

variation in long-term interest rate volatility. Second, we test the difference

in means between realized gamma on scheduled FOMC meeting days and

on other days when long-term interest rate volatility is lower.

Our first test using an IV is reported in columns 7 and 8 of Table 4,

where we show the results from estimating a two-stage least squares
20Note that monetary policy shocks are the root cause of the exogenous increase

in interest rate volatility, but we do not need to identify the size of those shocks to
implement our tests.
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regression specification. The IV for the endogenous interest rate volatility

variable (𝜎10𝑦𝑡
𝑡 ) is a dummy variable (𝐹𝑂𝑀𝐶𝑡) that takes the value 1 on

days when the FOMC holds a scheduled meeting and the value 0 otherwise.

The first stage, reported in column 7, shows that the FOMC variable is a

strong instrument for 𝜎10𝑦𝑡
𝑡 . The coefficient estimate is highly statistically

significant and positive, consistent with rising interest rate volatility on

days with scheduled FOMC meetings. The F-statistic for the first stage

regression is 277.4, indicating a strong IV. The second stage, which includes

the fitted values from the first stage as a right-hand side variable to replace

𝜎
10𝑦𝑡
𝑡 , is reported in column 8. The coefficient on long-term interest rate

volatility remains statistically insignificant.

Our second test addresses two limitations of our IV approach: (1)

other right-hand side variables in our specification may be invalid as

instruments in the first stage, and (2) our left-hand side variable is a dummy

variable for the statistical significance of realized gamma. We focus on the

statistical property of the average difference in realized gammas between

high-volatility days when the FOMC has its scheduled meetings and low-

volatility days just before the FOMC meetings. Specifically, in our data

sample we have 125 FOMC meeting days from May 2007 to December

2022. We pair these days with two alternative low-volatility samples: (1)

the days that are one day before the scheduled FOMC meetings, and (2)

the days that are one week before the scheduled FOMC meetings. Our null
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hypothesis (𝐻0) is that the average difference between the paired high-

volatility realized gammas and low volatility realized gammas is zero.21

We implement this test using the sub-sampling approach, which does

not require making strong assumptions about the unknown distribution

of realized gammas or estimating the sample mean variances. All that

is required to obtain an asymptotically valid test is that the sampling

distribution of the difference in paired realized gammas converges to some

unknown distribution and that each pair of realized gammas is independent

and identically distributed. The former is an extremely weak condition and

the latter is natural as we estimate realized gamma using the ratio of daily

realized covariances.

The results are reported in Table 5. Columns 1 and 2 show the

99-percent confidence intervals obtained by sub-sampling for the average

difference in paired realized gammas for life insurers and P&C insurers,

respectively. The test rejects 𝐻0 when the confidence intervals do not

contain zero. The first row of the table shows the results when the FOMC

meeting days are paired with one-day earlier days. The second row of

the table shows the results from pairing FOMC meeting days with one-

week earlier days. In both rows, the confidence intervals contain zero

and we cannot reject the null hypothesis that the paired realized gammas

are the same. For comparison, column 3 reports the confidence intervals
21In addition to calculating the paired difference, we also tested the difference between

the average realized gamma on scheduled FOMC meeting days and non-meeting days.
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from testing the difference in 10-year Treasury security realized volatility

between paired days. Column 3 shows that there was a statistically

significant increase in 𝜎10𝑦𝑡
𝑡 , as should be expected.

Table 5: Comparing realized gammas on days with high and low
interest rate volatility. We test the statistical significance of the average
difference in realized gammas between high-volatility days when the FOMC
has its scheduled meetings and low-volatility days just before the FOMC
meetings. Column 1 reports the test of life insurer gammas. Column 2
reports the test of P&C insurer gammas. Column 3 reports the test of daily
realized volatility of 10-year Treasury security returns, multiplied by 1𝑒 + 4
for legibility. The first row pairs the scheduled FOMC meeting days with
one-day earlier days. The second row pairs the scheduled FOMC meeting
days with one-week earlier days. The sub-sampled confidence intervals are
calculated using 10,000 combinations of 15 paired dates. Source: Authors’
calculations based on data from Refinitiv, the Center for Research in
Security Prices and the St Louis Fed’s FRASER database.

99% confidence interval

Life insurers P&C insurers 10yr Treasury

FOMC days vs. 1 day before [-0.072, 0.102] [-0.027, 0.086] [0.23, 0.606]
FOMC days vs. 7 days before [-0.063, 0.096] [-0.038, 0.074] [0.271, 0.629]

In summary, the additional tests we implemented to address the

potential endogeneity of realized gamma and 𝜎
10𝑦𝑡
𝑡 underscore that low

interest rate volatility is not the reason for our finding that life insurers’

interest rate risk hedging is generally effective i.e., that realized gamma is

generally statistically insignificant.
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4 Concluding remarks

In this paper, we introduced a new method to measure the time-varying

residual interest rate risk of financial intermediaries after they have

executed their risk management strategies. Our estimates are daily partial

correlations obtained using a nonparametric approach on high-frequency

financial market data. We then showed how to conduct statistical inference

on our estimates by calculating confidence intervals that are asymptotically

valid under extremely weak conditions. Our method can be adapted to

include additional variables in the regression model that underpins our

framework. Another potential future extension would be to allow for

‘jumps’ when estimating realized variances and covariances (Andersen,

Bollerslev and Diebold, 2007).

Our measure can be used to evaluate the interest rate risk vulnerabilities

of any financial intermediary with high-frequency stock prices almost in

real time, which is a useful tool for market analysts, supervisors, and

policymakers. We applied our method to life insurers, whose exposure

to interest rate risk has received less attention than, for example, banks.

In doing so, we offered an alternative to the potentially misleading low-

frequency OLS estimates that are prevalent in the existing literature. We

find that life insurers are generally well-hedged against long-term interest

rate movements. That said, they are more sensitive to changes in long-
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term interest rates than P&C insurers. We then showed that a measure of

the term premium helps to explain the difference in estimated sensitivities

between the two types of insurer. Lastly, we provided evidence that our

finding that insurers are generally well hedged against interest rate risk

is not because long-term interest rate volatility is low. Comparing these

results with those of other financial intermediaries, such as banks, is another

avenue for further research.
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Appendix for online publication

A How large is the rolling window bias?

In this appendix, we demonstrate the size of the bias from estimating

the two-variable regression model on a rolling window of daily data for

insurance companies. We start from the specification:

𝑟𝑖,𝑡 = 𝛼 + 𝛽𝑟𝑚,𝑡 + 𝛾𝑟𝑦10,𝑡 + 𝜖𝑖,𝑡

where 𝑟𝑖,𝑡 is the stock price return on the index of life insurers (described

in section 3.2) on day 𝑡, 𝑟𝑚,𝑡 is the return on the benchmark S&P500, and

𝑟𝑦10,𝑡 is the return on the 10-year Treasury security. The 𝛾 coefficient in this

specification is termed rolling gamma and is a low-frequency counterpart

to the realized gamma described in section 2 of the main paper.

Selecting the size for the rolling window is typically framed as a

tradeoff between (i) including more data to reduce standard errors and

(ii) being forced to assume the parameter is stable within the window

(Robertson, 2018). We follow the standard approach in the empirical

literature estimating interest rate risk for life insurers, and assume a rolling

window of two years (Sen, 2021; Huber, 2022).

Figure 4 shows the time series of rolling gammas. The shaded region

indicates the heteroskedasticity-corrected 90 percent confidence interval for
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Figure 4: Rolling window regression results. The black line
shows the rolling gamma estimates using end-of-day data and a two-
year rolling window. The shaded region indicates the heteroskedasticity-
corrected 90 percent confidence interval for the estimates. Source: Authors’
calculations based on data from Refinitiv, the Center for Research in
Security Prices.

the estimates. There are two main takeaways from the figure. First, the

estimates are almost always statistically significant in the post-crisis period.

This finding led researchers to conclude that life insurers’ risk management

became less effective in the aftermath of the GFC and spurred a research

agenda to understand the cause of this regime switch—e.g., Sen (2021);

Koijen and Yogo (2022); Huber (2022). Second, there are large “jumps” in

the time series corresponding to periods of market volatility, such as the

beginning of the financial crisis (2008) and the pandemic (2020).

Jumps in the time series hint at a problem of time-varying conditional

53



volatility in the underlying data. Figure 5 shows the problem by plotting

the square of the residuals (𝑟𝑖,𝑡 −𝑟𝑖,𝑡)2. Volatility clustering, which is clearly

present in our data, is a long-known empirical feature of financial time series

(Bollerslev, Chou and Kroner, 1992).

Figure 5: Squared residuals from rolling regression. Source:
Authors’ calculations based on data from Refinitiv, the Center for Research
in Security Prices.

The potential effects of conditional heteroskedasticity for OLS regres-

sions are well known. In some applications, such as when the primary

concern is estimating the conditional mean, a common view is that inference

can be made using the standard corrections proposed by White (1980)

or Newey and West (1987). However, as Hamilton (2008) points out,

misspecifying the errors will produce inefficient estimates and incorrect
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inference. The specific case of the rolling window OLS estimator was

studied by Cai and Juhl (2021), who showed that a bias can exist even

asymptotically with well-behaved errors. Intuitively, the rolling window

OLS estimates are weighted averages of the time-varying parameter and

the weights depend on the time-varying volatility. The asymptotic bias

arises when the two time series (parameter and volatility) are correlated.

In simulations, the rolling window OLS estimates are often unstable and

the bias can be substantial (Robertson, 2018).

One solution to the problem is to assume some structure for the

variance processes. By explicitly modeling the heteroscedasticity in the

variance-covariance matrix, we address the bias in the time series of

parameter estimates and gain efficiency. A typical approach in financial

econometrics is to appeal to autoregressive conditional heteroskedasticity

(ARCH) models (Bollerslev, Engle and Nelson, 1994). This class of flexible

models and its wide range of extensions are straightforward to implement

in off-the-shelf statistical packages. In practice, the generalized ARCH, or

‘GARCH’, model that allows for greater serial dependence in the error term

is an extremely common choice. The conditional variance of the process

for a GARCH(𝑟, 𝑝) is given by:

𝑉𝑎𝑟 (𝜖𝑡 |Ω𝑡−1) = ℎ𝑡 = 𝑎0 + 𝑎1𝜖2𝑡−1 + 𝑎2𝜖
2
𝑡−2 + · · · + 𝑎𝑝𝜖2𝑡−𝑝+

𝑏1ℎ𝑡−1 + 𝑏2ℎ𝑡−2 + · · · + 𝑏𝑟ℎ𝑡−𝑟 .
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As an exercise to gauge the size of the rolling window OLS bias in the

estimates reported in Figure 4, we assume that our three time series of

daily returns follow a multivariate GARCH(1,1) process. We specify the

joint process:

𝑟𝑖,𝑡 = 𝛼𝑖 + 𝑢𝑖,𝑡

𝑟𝑚,𝑡 = 𝛼𝑚 + 𝑢𝑚,𝑡

𝑟𝑦10,𝑡 = 𝛼𝑦10 + 𝑢𝑦10,𝑡

so

𝐸



©­­­­­­­«
𝑟𝑖,𝑡

𝑟𝑚,𝑡

𝑟𝑦10,𝑡

ª®®®®®®®¬
| Ω𝑡−1


=

©­­­­­­­«
𝛼𝑖

𝛼𝑚

𝛼𝑦10

ª®®®®®®®¬
and

𝑉𝑎𝑟



©­­­­­­­«
𝑟𝑖,𝑡

𝑟𝑚,𝑡

𝑟𝑦10,𝑡

ª®®®®®®®¬
| Ω𝑡−1


= 𝑉𝑎𝑟



©­­­­­­­«
𝑢𝑖,𝑡

𝑢𝑚,𝑡

𝑢𝑦10,𝑡

ª®®®®®®®¬
| Ω𝑡−1


=

©­­­­­­­«
𝜎2
11,𝑡 𝜎12,𝑡 𝜎13,𝑡

𝜎21,𝑡 𝜎2
22,𝑡 𝜎23,𝑡

𝜎31,𝑡 𝜎32,𝑡 𝜎2
33,𝑡

ª®®®®®®®¬
.

The last matrix—known as the dynamic conditional variance-covariance
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matrix—can be used to form the dynamic conditional ratio:

𝛾𝐷𝐶𝑡 =
𝜎13,𝑡

𝜎2
33,𝑡

,

which is obtained after specifying GARCH(1,1) processes for each second

moment. We call the ratio 𝛾𝐷𝐶𝑡 the dynamic conditional gamma, following

the literature that uses the same technique to estimate dynamic conditional

betas (Engle, 2016).

Figure 6 compares the different estimates of gamma. The blue dotted

line shows the rolling gamma estimates, while the green solid line shows

the dynamic conditional gamma estimates. The difference between the

two estimates is particularly striking during periods of high volatility, such

as the financial crisis and the global pandemic, revealing that the rolling

gamma is highly biased and misleading. For completeness, we include

the realized gamma estimates as the brown dashed line in the figure.

The relative proximity of the realized gamma estimates and the dynamic

conditional gamma estimates during those periods of stress is a reassuring

sign that both approaches are solving the underlying problem of conditional

heteroscedasticity. Note that dynamic conditional gamma and realized

gamma use completely different data and approaches to address the same

underlying problem.

Although dynamic conditional gamma and realized gamma deliver
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Figure 6: Comparing rolling gamma, dynamic conditional
gamma, and realized gamma. The figure shows three different
estimates of the sensitivity of life insurers’ stock prices to changes in interest
rates. Source: Authors’ calculations based on data from Refinitiv, the
Center for Research in Security Prices.
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similar parameter estimates, they are not the same. In particular, the

empirical approach that underpins the dynamic conditional gamma is

known to suffer from substantial limitations (Caporin and McAleer, 2013).

As a stated data representation—rather than derived model—the dynamic

conditional gamma has no moments or desirable asymptotic properties.

It serves our purposes as a diagnostic tool that reveals a huge bias in

rolling gamma. But to avoid reliance on the imposed structure and—most

importantly—to conduct valid inference, we strongly prefer the empirical

approach that uses realized variances and covariances in our paper.

B Hypothesis testing using the subsampling

method

In each day 𝑡 ∈ {1, . . . , 𝑇}, we estimate 𝛾𝑡 using the following linear

regression model

𝑟𝑖, 𝑗 ,𝑠 = 𝛼𝑡 + 𝛽𝑡𝑟𝑚, 𝑗,𝑠 + 𝛾𝑡𝑟𝑦10, 𝑗 ,𝑠 + 𝜖𝑖, 𝑗 ,𝑠

on a sample of 𝑛 = 388 observations corresponding to each of the 388 trading

minutes for day 𝑡 between 9:31am and 3:59pm indexed by 𝑠. We calculate

a confidence interval for each of the daily 𝛾𝑡 using subsampling following

Politis et al. (1999) under the assumption that the errors are asymptotically
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stationary. Asymptotic stationarity means that, for example, the errors

could follow an AR(1) process with autocorrelation parameter strictly less

than one and heteroskedastic innovations.

To simplify the exposition of subsampling, we rewrite the linear

regression model in matrix form as

y = Xβ + ϵ,

where y and ϵ are 𝑛 × 1 vectors, β is a 𝑝 × 1 vector which includes 𝛾𝑡 as

an element and X is an 𝑛× 𝑝 matrix of five-minute returns and a constant.

The estimator of β based on X and y is given by β̂ ≡ (X′X)−1X′y.

For any 𝑏 < 𝑛 such that 𝑏 > 𝑝, define the subvectors and submatrices

y𝑏,𝑠 ≡ (𝑦𝑠, . . . , 𝑦𝑠+𝑏−1)′ , ϵ𝑏,𝑠 ≡ (𝜖𝑠, . . . , 𝜖𝑠+𝑏−1)′ and (5)

X𝑏,𝑠 ≡

©­­­­­­­«
x′
𝑠

...

x′
𝑠+𝑏−1

ª®®®®®®®¬
, where X ≡

©­­­­­­­«
x′
1

...

x′
𝑛

ª®®®®®®®¬
(6)

The estimator of β based on X𝑏,𝑠 and y𝑏,𝑠 is given by

β̂𝑛,𝑏,𝑠 ≡ (X′
𝑏,𝑠X𝑏,𝑠)−1X′

𝑏,𝑠y𝑏,𝑠 .

Denote by 𝐽𝑏 (𝑃) the sampling distribution of the normalized statistic
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√
𝑏(β̂𝑛,𝑏,𝑠−β), where 𝑃 is the probability law governing the estimator β̂𝑛,𝑏,𝑠,

which is unknown. For any Borel set 𝐴 ∈ R𝑝, let

𝐽𝑏 (𝐴, 𝑃) = 𝑃𝑟𝑜𝑏𝑃{
√
𝑏(β̂𝑛,𝑏,𝑠 − β) ∈ 𝐴}.

The approximation to 𝐽𝑛 (𝐴, 𝑃) is defined by

𝐿𝑛,𝑏 (𝐴) =
1

𝑛 − 𝑏 + 1

𝑛−𝑏+1∑︁
𝑠=1

1{
√
𝑏(β̂𝑛,𝑏,𝑠 − β̂) ∈ 𝐴}.

Therefore, subsampling consist of evaluating a statistics on an exhaustive

set of subsamples of size 𝑏 < 𝑛 that are created from the original sample of

size 𝑛 and estimating the distribution of this statistics normalized by
√
𝑏.

As should be clear, each subsample contains consecutive observations from

the original time series sample. Therefore, each subsample is drawn from

the true data generating process.

In what follows we summarize the main result from subsampling related

to the estimation of a daily 𝛾𝑡 using intra-day time series observation. Note

that our limiting concept is that the number of equally spaced intraday

returns approaches infinity. We refer the readers to Politis et al. (1999) for

details and proofs.

Assumption 1 There exists a limiting law 𝐽 (𝑃) such that

1. 𝐽𝑛 (𝑃) converges weakly to 𝐽 (𝑃) as 𝑛 → ∞. This means that for
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any Borel set 𝐴 whose boundary has mass zero under 𝐽 (𝑃), we have

𝐽𝑛 (𝐴, 𝑃) → 𝐽 (𝐴, 𝑃) as 𝑛→ ∞.

2. For every Borel set 𝐴 whose boundary has mass zero under 𝐽 (𝑃) and

for any index sequence {𝑠𝑏}, we have 𝐽𝑏,𝑠𝑏 (𝐴, 𝑃) → 𝐽 (𝐴) as 𝑏 → ∞.

Theorem B.1 (Politis et al. (1999) Theorem 4.3.1) Let {(x𝑠, 𝜖𝑠)} be

a sequence of random vectors defined on a common probability space.

Denote the mixing coefficients for the {(x𝑠, 𝜖𝑠)} sequence by 𝛼(·). Define

𝑇𝑘,𝑠 ≡
1
√
𝑘

𝑠+𝑘−1∑︁
𝑎=𝑠

x𝑎ϵ𝑎 , 𝑉𝑘,𝑠 ≡ 𝐶𝑜𝑣(𝑇𝑘,𝑠) , and 𝑀𝑘,𝑠 ≡ 𝐸 (X′
𝑘,𝑠X𝑘,𝑠/𝑘).

Assume the following conditions hold. For some 𝛿 > 0,

• 𝐸 (x𝑠𝜖𝑠) = 0 for all 𝑠,

• 𝐸 |x𝑠, 𝑗𝜖𝑠 |2+2𝛿 ≤ Δ1 for all 𝑠 and all 1 ≤ 𝑗 ≤ 𝑝,

• 𝐸 |x𝑠, 𝑗 |4+2𝛿 ≤ Δ2 for all 𝑠 and all 1 ≤ 𝑗 ≤ 𝑝,

• 𝑉𝑘,𝑠 → 𝑉 > 0 uniformly in 𝑠 as 𝑘 → ∞,

• 𝑀𝑘,𝑠 → 𝑀 > 0 uniformly in 𝑠 as 𝑘 → ∞,

• 𝐶 (4) ≡ ∑∞
𝑘=1(𝑘 + 1)2𝛼 𝛿

4+𝛿 (𝑘) ≤ 𝐾.

Furthermore, assume that 𝑏/𝑛→ 0 and 𝑏 → ∞ as 𝑛→ ∞. Letting 𝐽 (𝑃) =

𝑁 (0, 𝑀−1𝑉𝑀−1). Then:
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i. 𝐿𝑛,𝑏 (𝐴) → 𝐽 (𝐴, 𝑃) in probability for each Borel set A whose boundary

has mass zero under 𝐽 (𝑃).

ii. Let 𝑍 be a random vector with L(𝑍) = 𝐽 (𝑍). For a norm | | cot | |

on R𝑘 , define univariate distributions 𝐿𝑛,| | cot | | and 𝐽| | cot | | (𝑃) in the

following way:

𝐿𝑛,𝑏,| | cot | | (𝑥) =
1

𝑛 − 𝑏 + 1

𝑛−𝑏+1∑︁
𝑠=1

1{| |
√
𝑏(β̂𝑛,𝑏,𝑠 − β̂ | |) ≤ 𝑥}

𝐽| | cot | | (𝑥, 𝑃) = 𝑃𝑟𝑜𝑏{| |𝑍 | | ≤ 𝑥}.

For 𝛼 ∈ (0, 1), let

𝑐𝑛,𝑏,| |·| | (1 − 𝛼) = inf{𝑥 : 𝐿𝑛,𝑏,| |·| | (𝑥) ≥ 1 − 𝛼}.

Correspondingly, define

𝑐 | |·| | (1 − 𝛼, 𝑃) = inf{𝑥 : 𝐽| |·| | (𝑥, 𝑃) ≥ 1 − 𝛼}.

If 𝐽| |·| | (·, 𝑃) is continuous at 𝑐 | |·| | (1 − 𝛼, 𝑃) then

𝑃𝑟𝑜𝑏𝑃{| |
√
𝑏(β̂𝑛,𝑏,𝑠 − β̂ | | ≤ 𝑐𝑛,𝑏,| |·| | (1 − 𝛼)} → 1 − 𝛼 as 𝑛→ ∞.
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Thus, the asymptotic coverage probability under 𝑃 of the region

{β : | |
√
𝑏(β − β̂ | | ≤ 𝑐𝑛,𝑏,| |·| | (1 − 𝛼)}

is the nominal level 1 − 𝛼.

Theorem B.1 shows that we can derive asymptotically valid confidence

intervals for the daily estimator β̂ using 𝐿𝑛,𝑏 (𝐴) because it is a consistent

estimator of 𝐽 (𝐴, 𝑃). By exploiting the usual duality between the

construction of a confidence interval for 𝛾𝑡 and the construction of a

hypothesis test about 𝛾𝑡 , subsampling allows us to make asymptotically

valid inference about the true 𝛾𝑡 . In our application, we wish to test the

null hypothesis that the daily 𝛾𝑡 is statistically different from 0. Under the

null, insurers are hedged against interest rate risk as their stock price is

not sensitive to movement in the ten-year treasury rate. If the value of the

estimated daily 𝛾𝑡 falls outside the daily confidence interval, we reject the

null hypothesis on that day.

Subsampling is not as well known as the bootstrap method in economics

and finance, which warrants a cursory comparison—see Politis et al. (1999)

for textbook-length treatment. The most relevant bootstrap method for our

time series application is the so-called Moving Blocks Bootstrap (MBB).

As with subsampling, MBB breaks down the original time series to smaller

blocks of consecutive observations, which preserves the serial correlation
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structure within each block. Practically, the main difference is that MBB

draws samples with replacement from the blocks and connects the sampled

blocks together to form a bootstrap sample of size 𝑛. Therefore, by

construction, MBB imposes the assumption that blocks of an arbitrary size

𝑏 are uncorrelated. This assumption about the unknown data generating

process is rather strong and likely to be violated in our application. From

a technical point view, the bootstrap method requires that the distribution

of the statistic of interest be locally smooth as a function of the unknown

model. Establishing this result, even if it is indeed true, would be non-

trivial. With subsampling, we do not need to make these assumptions or

verify the smoothness of the distribution under the true model to draw

asymptotically valid inferences. All that is required is that our normalized

statistic has a limit distribution under the true model.
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C Summary statistics for Section 3.4

Table 6: Summary statistics. This table reports summary statistics
for the variables used to analyze the determinants of the significance of
realized gamma. 𝛾𝑖,𝑡 is realized gamma for insurer type 𝑖 ∈ {Life, P&C}.
The binary variable 𝟙(𝛾𝑖,𝑡<0) takes the value 1 when realized gamma for
insurer type 𝑖 is statistically significant and 0 otherwise. 𝑇𝑃𝑡 is the term
premium estimate from Adrian et al. (2013), 𝐵𝑎𝑎 − 𝐴𝑎𝑎𝑡 is the Moody’s
Baa-Aaa seasoned corporate spread, and 𝐹𝐶𝑡 is the ICE BoA Single-A US
corporate index option-adjusted spread. 𝜎Life

𝑡 is the realized volatility of
the intraday returns of life insurers. 𝜎10yt

𝑡 is the realized volatility of the
intraday returns on 10-year Treasury. The statistics for 𝜎Life

𝑡 and 𝜎
10yt
𝑡

are multiplied by 1e+4 for legibility. Source: Authors’ calculations based
on data from Refinitiv, the Center for Research in Security Prices, FRED,
and Adrian et al. (2013).

Variable No. obs. Mean Median Std. Dev. p25 p75

𝛾Life,𝑡 3,901 -0.19 -0.16 0.31 -0.34 -0.02
𝟙(𝛾Life,𝑡<0) 3,923 0.32 0 0.47 0 1
𝛾𝑃&𝐶,𝑡 3,901 -0.12 -0.09 0.22 -0.21 0.01
𝟙(𝛾P&C,𝑡

<0) 3,923 0.18 0 0.38 0 0
𝑇𝑃𝑡 3,896 0.54 0.30 1.10 -0.33 1.51
𝐵𝑎𝑎 − 𝐴𝑎𝑎𝑡 3,897 1.08 0.96 0.47 0.82 1.19
𝐹𝐶𝑡 3,921 1.49 1.17 1.01 0.94 1.64
𝜎

10yt
𝑡 3,923 0.24 0.16 0.31 0.10 0.28
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St. Louis; https://fred.stlouisfed.org/series/AAA
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1 Introduction

In addition to aggregating information, asset markets allow agents to exhaust private gains from

trade. While there is a well developed literature on the informativeness of prices, less is known about

if and when markets effectively exhaust all gains from trade.1 In this paper, we exploit the unique

design of a decentralized exchange to shed light on the market for liquidity and show, theoretically

and empirically, that market fragmentation can improve trading efficiency.

Automated market makers such as Uniswap v3 provide a unique environment to investigate the

market for liquidity. While there are various new institutional details that animate these exchanges,

for our purposes three are economically important. First, in automated exchanges, liquidity demand

and supply can easily be distinguished: users either supply or demand liquidity. Because of this,

we can isolate the effect of transactions costs on each side of the market for liquidity. Second,

costs and benefits incurred by liquidity suppliers are easier to observe because prices are not set by

market participants, but are automatically calculated as a function of liquidity demand and supply.

Thus, liquidity suppliers are not compensated through price impact. Third, market participants are

pseudo-anonymous so we can identify and document liquidity suppliers at a high frequency. These

unique features allow us to investigate, theoretically and empirically, how transactions costs affect

liquidity supply.

Beyond investigating the market for liquidity, there are three additional reasons to investigate

liquidity provision in AMMs. First, these markets are large and successful in their own right: After

its May 2021 launch, Uniswap v3 features daily trading volume in excess of US $1 billion. Second,

for major pairs such as Ether against USD stablecoins, Uniswap boasts twice or three times better

liquidity than continuous limit order exchanges such as Binance, which suggests that this design

can be economically superior.2 Third, as traditional assets become tokenized, and markets become

more automated, this new market form could be adopted.3

Uniswap v3 provides two innovations over the previous v2. First, liquidity suppliers and

demanders select into trading places (called pools) that differ on transaction fees. Each asset pair to

be traded on up to four liquidity pools that only differ in the compensation for liquidity providers:

in particular, liquidity fees can be equal to 1, 5, 30, or 100 basis points and the corresponding tick

sizes are 1, 10, 60, or 200 basis points. These proportional fees are paid by liquidity demanders

and are the only source of remuneration to liquidity providers. (These fees, as we discuss below,

are similar to the make-take fees that are prevalent in limit order markets.) Second, on Uniswap

1Gains from trade comprise an idiosyncratic private value for the underlying asset, but also idiosyncratic preferences
for trade speed or “liquidity.”Agents’ idiosyncratic value for the underlying asset are plausibly determined by their
portfolio positions, and therefore independent of the trading place. By contrast, their idiosyncratic preference for
liquidity determines market quality.

2See The Dominance of Uniswap v3 Liquidity; May 5, 2022.
3Swarm — a BaFin regulated entity — already offers AMM trading for a variety of tokenized Real World Assets.
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v3, liquidity providers can submit “concentrated liquidity.” Even though their liquidity is passively

supplied, they can choose the price range over which it is supplied. With volatile assets, these

concentrated liquidity positions can become stale and require rebalancing.

Besides differences in fees, the liquidity pools are otherwise identical and, importantly, they

share the common infrastructure of the Ethereum blockchain. Importantly, all participants pay a

transaction cost (called a“gas fee”) to access the markets. Our theory and empirical work investigates

the effect of different proportional fees and fixed fees on liquidity supply. At launch, Uniswap Labs

conjectured that trading and liquidity should consolidate in equilibrium on a single “canonical” pool

for which the liquidity fee is just enough to compensate the marginal market maker for adverse

selection and inventory costs. That is, activity in low-volatility pairs such as stablecoin-to-stablecoin

trades should naturally gravitate to low fee liquidity pools, whereas speculative trading in more

volatile pairs will consolidate on high fee markets.4 As we show, this reasoning is flawed.

We present a simple model with trade between liquidity suppliers and two types of liquidity

demand. Consistent with the design of v3, liquidity suppliers chose a market and then place their

liquidity into a band around the current value of the asset. The posted liquidity is subject to a

bonding curve and hence generates a price impact cost for the liquidity demanders (we emphasize

that this does not remunerate the liquidity suppliers). Liquidity suppliers have heterogeneous

endowments, interpretable as different capital constraints — low-endowment liquidity providers

are akin to retail traders, whereas high-endowments stand in for large institutional investors or

quantitative funds. Trade occurs against these positions either because a liquidity demander

arrives who has experienced a liquidity shock or because the value of the asset has changed and an

arbitrageur adversely selects the passive liquidity supply. Collectively, the decisions of the liquidity

demanders determine the payoff to the liquidity suppliers. After large private or common value

trades, liquidity providers rebalance their positions; to do so, liquidity providers incur a fixed cost

(i.e., gas price) each time they update their position.

Traders demanding liquidity face two types of costs: first, the fee associated with their chosen

pool (low or high) and second, the price impact costs generated by the pool’s bonding curve and

supplied liquidity. We find that traders route small orders exclusively to the low-fee pool to obtain

the all-in lowest cost. In contrast, large traders split their orders across both low- and high-fee

liquidity pools. As a result, low-fee markets are actively traded and require frequent liquidity

updates whereas high-fee pools have a longer liquidity update cycle since they absorb fewer trades.

We establish conditions under which there is fragmentation or consolidation. Specifically, even

in this simple framework, there is a robust parameter range in which liquidity does not naturally

concentrate on one of the exchanges. Both pools can attract a positive market share if liquidity

providers face gas fees and the adverse selection costs are sufficiently low. Liquidity providers trade

4See Flexible fees paragraph at https://uniswap.org/blog/uniswap-v3; accessed September 14, 2022.
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off a higher revenue per unit of time in the low-fee pool (driven by the larger trading volume) against

higher adverse selection as well as the additional gas cost required for active liquidity management.

As a result, liquidity provider clienteles emerge in equilibrium. Liquidity providers with large

endowments gravitate towards low-fee markets, as they are best positioned to frequently update

their position. In contrast, smaller market makers choose to passively provide liquidity on high-fee

markets where they only trade against large orders being routed there. They optimally trade off a

lower execution probability against higher fees per unit of volume, reduced adverse selection, as well

as a lower liquidity management cost per unit of time.

Not only does liquidity fragment, but it differs in both use and type across the two markets. A

small number of highly active large liquidity providers, potentially institutional investors and hedge

funds, primarily trade against numerous small incoming trades on pools with low fees. In contrast,

high-fee pools involve less frequent trading between a substantial number of capital-constrained

passive liquidity providers (e.g., retail market makers) on one side and a few sizeable incoming orders

on the other. As the fixed gas fee affects liquidity providers pool choice, changes in the common

fixed market access fee differentially affects the liquidity supply on the two pools. Specifically, it

reduces market quality (in the sense of lower posted liquidity) on the low fee pool.

As we distinguish between liquidity demanders who are trading to exploit gains from trade

and liquidity demanders who are arbitraging common value changes, we can decompose returns to

liquidity providers, and show that adverse selection is higher on the low fee pool. Given that the

low fee pool is populated with larger liquidity suppliers, this suggests that institutional traders bear

price risk.

Our findings indicate that liquidity fragmentation can enhance market quality, as measured

by total gains from trade. In a single fee market, a fee that is too low fails to attract liquidity

providers with smaller endowments and thus more sensitive to fixed costs, leading to unrealized

gains. Conversely, a very high fee results in prohibitively high trading costs and deters trade. A

two-pool market with heterogeneous fees offers two instruments to independently manage costs.

The higher fee determines the marginal liquidity provider LP entering the market, and therefore the

realized gains from trade. The lower fee pool, by attracting LP with larger endowments, can reduce

transaction costs. We demonstrate that a two-pool fee structure can always be designed to yield

higher gains from trade than any single-pool arrangement.

Using the model for guidance, we analyze more than 28 million interactions with Uniswap v3

liquidity pools – that is, all liquidity updates and trades from the inception of v3 in May 2021 until

July 2023. We first document liquidity fragmentation in 32 out of 242 asset pairs in our sample,

which account for 95% of liquidity committed to Uniswap v3 smart contracts and 93% of trading

volume. For each of the fragmented pairs, trading consolidates on two pools with adjacent fee levels:

either 1 and 5 basis points (e.g., USDC-USDT), 5 and 30 basis points (ETH-USDC), or 30 and 100

basis points (USDC-CRV).
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We then document that high-fee pools are on average larger – with aggregate end-of-day liquidity

of $46.50 million relative to $33.78 million, the average size of low-fee pools. Nevertheless, three

quarters of daily trading volume executes on low-fee pools. In line with the model predictions,

low-fee pools are more active as they capture many small trades. There are five times as many

trades on low- than on high-fee pools (610 versus 110). However, the average trade on the high fee

pool is twice as large: $14,490 relative to $6,340. Unsurprisingly, liquidity cycles – measured as the

time between the submission and update of posted liquidity – are 20% shorter on the highly active

low-fee pool.

We find robust evidence of liquidity supply clienteles across pools. The average liquidity deposit

is 107.5% larger on the low-fee pool, after controlling for daily volume and return volatility. At the

same time, high-fee pools’ market share is 21 percentage points higher. The results point to an

asymmetric match between liquidity supply and demand: large liquidity providers are matched with

small liquidity demanders on low-fee pools, whereas small liquidity providers trade with a few large

orders on the high-fee pool.

We then turn to the common fixed cost of accessing the market, or gas fees. The market shares

of the liquidity pools depend on the magnitude of gas costs on the Ethereum blockchain. In the

model, a higher gas price leads to a shift in liquidity supply from the low- to the high-fee pool as

active position management becomes relatively more costly for the marginal liquidity provider. We

find that a one standard deviation increase in gas prices corresponds to a 4.63 percentage points

decrease in the low-fee pool market share, and a 29% drop in liquidity inflows on days when gas

costs are elevated.

Consistent with our model, we find that liquidity providers in low-fee pools earn higher fee yields

but face increased adverse selection costs. Specifically, the daily fee yield is 2.03 basis points larger on

low-fee pools. On the other hand, the permanent price impact as measured by loss-versus-rebalancing

(LVR, as in Milinois, Moallemi, Roughgarden, and Zhang, 2023) is 6.39 basis points or 81% greater

in low-fee pools compared to high-fee ones. However, despite this difference, the deviations in prices

between high- and low-fee pools and those on centralized exchanges do not differ significantly.

Our paper is related to various literatures. Pagano (1989) shows that if an asset is traded on

two identical exchanges with equal transaction costs, in equilibrium market participants gravitate to

a single exchange due to network effects. In practice, exchanges are rarely identical: fragmentation

can emerge between fast and slow exchanges (Pagnotta and Philippon, 2018; Brolley and Cimon,

2020) or between lit and dark markets (Zhu, 2014). In our model, fragmentation on decentralized

exchanges is driven by variation in liquidity fees as well as different economies of scale due to

heterogeneity in liquidity provider capital. We find that liquidity fragmentation driven by high gas

fees implies larger transaction costs on incoming orders. We note that there is no time priority on

decentralized exchanges, which clear in a pro rata fashion. On markets with time priority, Foucault

and Menkveld (2008) and O’Hara and Ye (2011) find that market segmentation in equity markets
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improves liquidity (by allowing queue jumping) and price discovery.

Fixed costs for order submission are uncommon in traditional markets. However, in 2012, the

Canadian regulator IIROC implemented an “integrated fee model” that charged traders for all

messages sent to Canadian marketplaces. Korajczyk and Murphy (2018) document that this measure

disproportionately affected high-frequency traders, resulting in wider bid-ask spreads but lower

implementation shortfall for large traders, possibly due to a reduction in back-running activity. Our

study contributes additional insights by highlighting that the introduction of a fixed cost, even when

applied across exchanges, can lead to market fragmentation.

We also relate to a rich literature on market fragmentation and differential fees. Closest to

our paper, Battalio, Corwin, and Jennings (2016) and Cimon (2021) study the trade-off between

order execution risk and compensation for liquidity provision in the context of make-take fee

exchanges. However, Battalio, Corwin, and Jennings (2016) specifically addresses the issue of the

broker-customer agency problem, whereas our study focuses on liquidity providers who trade on their

own behalf. In traditional securities markets, make-take fees are contingent on trade execution and

proportional to the size of the order. On the other hand, gas costs on decentralized exchanges are

independent of order execution, highlighting the significance of economies of scale (lower proportional

costs for larger liquidity provision orders) and dynamic liquidity cycles (managing the frequency

of fixed cost payments). Strategic brokers in Cimon (2021) provide liquidity alongside exogenous

market-makers in a static setting. We complement this approach by modelling network externalities

inherent in the coordination problem of heterogeneous liquidity providers. In our dynamic setup,

this allows us to pin down the equilibrium duration of liquidity cycles and the relative importance

of gas fixed costs.

Our paper relates to a nascent and fast-growing literature on the economics of decentralized

exchanges. Many studies (e.g., Aoyagi, 2020; Aoyagi and Ito, 2021; Park, 2022) focus on the

economics of constant-function automated market makers, which do not allow liquidity providers to

set price limits. In this restrictive environment, Capponi and Jia (2021) argue that market makers

have little incentives to update their position upon the arrival of news to avoid adverse selection,

since pro-rata clearing gives an advantage to arbitrageurs. Lehar and Parlour (forthcoming) solve

for the equilibrium pool size in a setting where liquidity providers fully internalize information

costs without rushing to withdraw positions at risk of being sniped. We argue that on exchanges

that allow for limit or range orders, the cost of actively managing positions becomes a first-order

concern, as liquidity providers need to re-set the price limits once posted liquidity no longer earns

fees. Our empirical result on economies of scale echoes the argument in Barbon and Ranaldo (2021),

who compare transaction costs on centralized and decentralized exchanges and find that high gas

prices imply that the latter only become competitive for transactions over US$100,000. Hasbrouck,

Rivera, and Saleh (2022) argue that liquidity providers require remuneration. We complement the

argument by stating that high fees might be necessary for some liquidity providers to cover the fixed
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costs of managing their position. In line with our theoretical predictions, Caparros, Chaudhary,

and Klein (2023) find that liquidity providers reposition their quotes more often on Uniswap V3

pools built on Polygon, which features substantially lower gas fees. Finally, Heimbach, Schertenleib,

and Wattenhofer (2022) document that after accounting for price impact, concentrated liquidity

on Uniswap v3 pools results in increased returns for sophisticated participants but losses for retail

traders.

Despite higher gas costs, decentralized exchanges may hold advantages over centralized venues.

Han, Huang, and Zhong (2022) demonstrate Uniswap frequently leads price discovery compared to

centralized exchanges such as Binance, despite the latter having higher trading volume. Capponi,

Jia, and Yu (2023) find that the fee paid by traders to establish execution priority unveils their

private information, and therefore contributes to price discovery. Aspris, Foley, Svec, and Wang

(2021) argue that decentralized exchanges offer better security than their centralized counterparts

since assets are never transferred to the custody of a third party such as an exchange wallet. In

turn, Brolley and Zoican (2023) make the point that decentralized exchanges may be able to reduce

overall computational costs associated with latency arbitrage races, as they eliminate long-term

co-location subscriptions.

Our paper is related to both the finance literature that examines whether make-take fees affect

market quality and to the economics literature on two-sided markets and platform competition.

Broadly, our work differs from the finance literature in that we explicitly consider equity markets as

markets for liquidity without focusing on the order choice decision, and our work differs from the

economics literature in that we explicitly analyze an equity market as a market for liquidity. The

main insight that this brings is that market participants are both large and strategic, compared to

smaller players in consumer-facing markets that are often analyzed in the economics literature.

2 Model

Asset and agents. Consider a continuous time model of trade in a single token T with expected

value vt > 0. Three risk neutral trader types consummate trade in this market: a continuum of

liquidity providers (LPs), liquidity traders (LTs), and arbitrageurs (A). Trade occurs either because

public news triggers a change in the common value of the asset, or because market participants

have heterogeneous private values for the asset.

Arrival times of news and private value shocks follow independent Poisson processes with rates

η ∈ (0, 1) and 1 − η, respectively.5 For notational compactness, we first characterize the generic

shock distribution and then describe its effects on arbitrageurs or liquidity traders. Conditional on

5This is without loss of generality, as what matters in the model is the relative arrival rate of news relative to
liquidity traders.
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an event at time t, the asset value changes to vt

(
1 + I δ̃

)
for all traders in the case of a common

value shock, or for an arriving (LT) in the case of the private value shock. Here, I is an indicator

that takes on the value of 1 if the taker buys and −1 if the taker sells. The value innovation δ̃ has a

probability density

ϕ (δ) =
1

2∆
√
1 + δ

for δ ∈
[
0,∆2 − 1

]
, (1)

thus
√
1 + δ̃ is uniformly distributed between [1,∆]. This assumption is innocuous and made for

tractability purposes.

When news arrives, the innovation is to the common value of the token. (As we are agnostic as

to the source of value of cryptocurrencies, this common value shock could include the possibility

of resale on another exchange.) After such a shock, an arbitrageur A trades with the liquidity

providers whenever profitable, and LPs face an adverse selection loss. Conversely, when a liquidity

trader enters the market, they experience a private value shock — and liquidity providers continue

to value the token at vt. In what follows for expositional simplicity, as in Foucault, Kadan, and

Kandel (2013), we focus on a one sided market in which liquidity takers act as buyers, and news

lead to an increase in token value.

Liquidity providers (LP) differ in their endowments of the token. Each provider i can supply

at most qi di of the token, where qi follows an exponential distribution with scale parameter λ.

The right skew of the distribution captures the idea that there are many low-endowment liquidity

providers such as retail traders, but few high-capital LPs such as sophisticated quantitative funds.

Heterogeneity in LP size is captured by λ, where a larger λ naturally corresponds to a larger

dispersion of endowments and larger aggregate liquidity supply. Given the endowment distribution,

collectively LPs supply at most

S =

∫ ∞

0
qi
1

λ
e−

qi
λ di = λ (2)

tokens.

Trading environment. Traders can interact in two liquidity pools in which token trade occurs

against a numéraire asset (cash). At the start of the trading game, each liquidity provider (LP)

deposits liquidity to a single pool within a symmetric price band around the current asset value[
v

(1+r)2
, v(1 + r)2

]
, where r ≥ 0. Here, we make use of the fact that V3 features “price bands,” and

thus liquidity can be consumed with a bounded price impact. Within this range, prices in both pools

satisfy a constant product bonding curve as in Adams, Zinsmeister, Salem, Keefer, and Robinson

(2021). In particular, for pool k,(
Tk +

Lk√
v (1 + r)

)
︸ ︷︷ ︸
virtual token reserves

(
Tkv + Lk

√
v

1 + r

)
︸ ︷︷ ︸

virtual numeraire reserves

= L2
k, (3)
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where Tk is the amount of tokens deposited on pool k and Lk is the liquidity level of pool k, defined

as

Lk =
Tk

1√
v
− 1√

v
(1 + r)

. (4)

To purchase τ tokens, a trader needs to deposit an amount n (τ) = τTk
v(1+r)

τ+(1+r)(Tk−τ) of numéraire

into the pool, where n (τ) is the solution to the invariance condition(
Tk − τ +

Lk√
v (1 + r)

)
︸ ︷︷ ︸

virtual token reserves

(
Tkv + n (τ) + Lk

√
v

1 + r

)
︸ ︷︷ ︸

virtual numeraire reserves

= L2
k. (5)

Fees are levied on liquidity takers as a fraction of the value of the trade and distributed pro

rata to liquidity providers. Crucially, the pools have different fees. One pool charges a low fee, and

one pool charges a high fee which we denote ℓ and h respectively. Specifically, to purchase τ units

of the token on the low fee pool, the total cost to a taker is (1 + ℓ)n (τ, Tℓ). The LPs in the pool

receive ℓn (τ, Tℓ) in fees. In addition, consistent with gas costs on Ethereum, all traders incur a

fixed execution cost Γ di > 0 to interact with the market.

Figure 1 illustrates the timing of the model.

Pool H

Pool L

LPs deposit qi
in pool k ∈ {L,H}

Small
LT

Small
LT

Large
LT

News
δ̃ ∈ (ℓ, h)

A trades
on pool L

LP rebalance
on pool L

Large
LT

Small
LT

News
δ̃ > h

A trades
on both
pools

LP rebalance
on both
pools

Figure 1: Model timing

To ensure the possibility of liquidity re-balancing in both pools, we assume that innovations are

large enough to ensure that LPs may need to rebalance their position on the high fee pool or:

Assumption 1: The size of innovations are sufficiently large so that there is a positive probability

that liquidity providers need to re-balance on the high-fee pool. That is, ∆ > (1 + r)
√
1 + h.

2.1 Equilibrium

2.1.1 Optimal trade size

First, consider the decisions of arbitrageurs and liquidity traders holding a value v (1 + δ) for the

asset. Faced with pool sizes of Tℓ and Th in the low and high pool respectively, their optimal trade
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on pool k maximizes their expected profit, net of fees and price impact:

max
τ

Profit LT (τ, δ) ≡ τv (1 + δ)− (1 + fk) τTk
v (1 + r)

τ + (1 + r) (Tk − τ)
, (6)

which yields the optimal trade quantity:

τ⋆ (δ) = Tk min

{
1,

1 + r

r
max

{
0, 1−

√
1 + fk
1 + δ

}}
. (7)

From equation (7), a trader with valuation v (1 + δ) only trades on pool k if the gains from trade are

larger than the liquidity fee, i.e., δ > fk. Further, if δ > (1 + fk) (1 + r)2 − 1 so that the gains from

trade are larger than the maximum price impact, then the trader consumes all available liquidity in

the pool.

2.1.2 Fee revenue for liquidity providers from private value trades

The revenue for liquidity providers can be expressed as the product of the pool fee and the numéraire

deposit required from liquidity traders to purchase τ⋆ token units, denoted by n(τ⋆, Tk). That is,

fkn (τ⋆ (δ) , Tk) = fkvTk min

{
1 + r,

1 + r

r
max

{
0,

√
1 + δ

1 + fk
− 1

}}
. (8)

If the innovation δ corresponds to a private rather than common value shock, then an arbitrageur

optimally steps in to reverse the liquidity trade as described in Lehar and Parlour (forthcoming).

In this case, liquidity providers effectively earn double the fee revenue in (8) without affecting the

capital structure of the pool; there is neither a capital gain nor a loss for the LPs.

The fee revenue in (8) scales linearly with the size of the pool Tk. Since fee proceeds are

distributed pro-rata among liquidity providers based on their share qi
Tk
, it follows that fee revenue

an LP with endowment qi providing liquidity on pool k increases linearly in their endowment:

FeeRevenuei,k (δ) = 2
qi
Tk

fkn (τ⋆, Tk)

= 2qivfk min

{
1 + r,

1 + r

r
max

{
0,

√
1 + δ

1 + fk
− 1

}}
. (9)

The expression in (9) denotes the fee revenue conditional on the private value δ of the incoming

trade. To compute the expected fee revenue, we integrate this expression across all posible value

9



shocks:

EFeeRevenuei,k =

∫ ∆2−1

δ=1
FeeRevenuei,k (δ)ϕ (δ) dδ

= qi v
fk(r + 1)

(
2∆− r

√
fk + 1− 2

√
fk + 1

)
∆︸ ︷︷ ︸

≡L(fk)

, (10)

where we define L (fk) as the liquidity yield : that is, the per-unit LP fee revenue from supplying

liquidity to LTs in pool k.

Lemma 1. There exists a threshold fee level f > 0 such that the liquidity revenue L (fk) first increases

in the pool fee fk for f ≤ f , then decreases in the pool fee for f > f .

Lemma 1 points out to a non-linear relationship between fee levels and liquidity yield. Initially,

as fees increase, the enhanced revenue from higher fees outweighs the decrease in trading volume

due to increased transaction costs, resulting in a net gain in revenue. However, beyond a certain

fee threshold, the drop in trading volume dominates the larger fee, leading to a decrease in overall

revenue. A salient implication is that if pool fees are large enough, the liquidity yield on the high

fee pool may exceed the yield on the low-fee pool.

2.1.3 Adverse selection cost for liquidity providers

If news occurs (i.e., if δ represents a common value shock), liquidity providers trade against

arbitrageurs rather than liquidity traders. In this case, there is no subsequent price reversal following

the initial trade. The capital structure of the liquidity pool changes, as arbitrageurs remove the

more valuable asset: i.e., buy tokens upon a positive common value shock. While LPs earn fee

revenues on arbitrage trades, they also incur adverse selection losses by trading against the direction

of the news. Moreover, if the magnitude of news is large enough that arbitrageurs remove all tokens

supplied in the price range, then LPs face additional costs, that is a gas fee Γ di to re-balance

liquidity around the new asset value.

Table 1 delineates the LP fee revenue from selling tokens to arbitrageurs, as well as the marked-

to-market value of the tokens sold. If the size of news (δ) does not exceed the pool fee, then

arbitrageurs do not trade since the potential profit does not justify the transaction cost. Conversely,

if the news size is larger than pool fee, then arbitrageurs execute a trade proportional to the size of

the pool, and they exhaust the available liquidity on the price range if the news is large enough:

specifically, if δ > (1 + fk) (1 + r)2 − 1. The profit for liquidity providers in each scenario is the

difference between the revenue and the marked-to-market value. Notably, the profit is consistently

negative, since LPs are trading against the direction of news.
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Table 1: Fee revenue and capital losses on arbitrage trades

News size Revenue (numeraire) Marked-to-market token value

δ ≤ fk 0 0

δ ∈
(
fk, (1 + fk) (1 + r)2 − 1

]
vqi

1+r
r (1 + fk)

(√
1+δ
1+fk

− 1
)

vqi
1+r
r (1 + δ)

(
1−

√
1+fk
1+δ

)
δ > (1 + fk) (1 + r)2 − 1 vqi (1 + fk) (1 + r) vqi (1 + δ)

The expected LP profit from trading with arbitrageurs equals −qiv×A (fk), where A (fk) is the

per-unit adverse selection cost from liquidity provision in pool k:

A (fk) = P
(
fk < δ ≤ (1 + fk)(1 + r)2 − 1

)
× 1 + r

r
E
[
(1 + fk) + (1 + δ)− 2

√
(1 + δ) (1 + fk)

]
+

+ P
(
δ > (1 + fk)(1 + r)2 − 1

)
× [E (1 + δ)]− (1 + fk) (1 + r)

}
. (11)

Lemma 2. The adverse selection cost A (fk) decreases in the pool fee fk. In particular, the high-fee

pool has a lower adverse selection cost than the low-fee pool.

Lemma 2 indicates that higher pool fees lower adverse selection costs through two mechanisms:

First, they increase compensation per unit traded for liquidity providers (LPs), enhancing their

returns on trades with arbitrageurs. Second, higher fees discourage arbitrageur activity, effectively

reducing the volume of informed trades. Figure 2 showcases the results in Lemmas 1 and 2 and

illustrates the comparative statics of liquidity yield and adverse selection cost with respect to the

pool fee.
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Figure 2: Liquidity yield and adverse selection cost
This figure illustrates the expected fee yield from liquidity trades (left panel) and the adverse selection cost (right
panel), as a function of the pool fee f . Parameter values: r = 0.001, λ = 1, η = 0.1, and ∆ = 1.1 (1 + r)

√
1 + h.

Liquidity rebalancing costs arise only when news events are large enough to deplete all available

liquidity within a given price range, pushing liquidity providers’ (LPs) positions “out of range.”

Rebalancing only occurs post-news, since equally large liquidity trades would be reversed by

arbitrageurs. Conditional on news arrival, the expected cost of rebalancing is

C (k) = P
(
δ > (1 + fk)(1 + r)2 − 1

)
Γ = Γ

(
1−

√
1 + fk (1 + r)

∆

)
, (12)

which is decreasing in the pool fee fk. This result is straightforward: smaller news events can cause

arbitrageurs to deplete liquidity in low-fee pools, whereas it takes larger news to do the same in

high-fee pools. Consequently, LPs in lower fee pools face more frequent rebalancing and incur higher

fixed costs.

2.1.4 Liquidity provider pool choice

Liquidity providers face a choice between the low and high fee pool or not participating in the

market. An LP of size qi earns expected profit

πL = qi [(1− η)L (ℓ)− ηA (ℓ)]− ηΓ

(
1−

√
1 + ℓ (1 + r)

∆

)
and (13)

πH = qi [(1− η)L (h)− ηA (h)]− ηΓ

(
1−

√
1 + h (1 + r)

∆

)
,
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from choosing pool L or H, respectively. Equation (13) underscores the trade-off faced by liquidity

providers (LPs): balancing the liquidity yield from trades with liquidity traders (LTs) against the

adverse selection costs and the fixed gas costs associated with re-balancing their position.

First, consider the choice of participating in the market. An agent only provides liquidity on

pool k if she is able to break even – that is, if her endowment qi is large enough. We define q
L

and q
H

as the thresholds at which the participation constraints πL (q) = 0 and πH (q) = 0 are

satisfied, respectively. If q
k
≥ 0 for a pool k, it indicates that any LP with an endowment qi at least

equal to q
k
can join pool k and expect to earn a positive profit, with the marginal entrant breaking

even. Conversely, if q
k
< 0, it suggests that pool k is not economically viable as the participation

constraint is breached for all LPs.

Assumption 2: To avoid trivial cases, we focus on the case that both markets are potentially viable,

or equivalently the intensity of news is low enough:

η ≤ min
k

L (k)

L (k) +A (k)
, (14)

such that q
k
≥ 0.

Next, consider the choice between pools. Liquidity provider i chooses the low-fee pool if and

only if

πL − πH = qi

(1− η) (L (ℓ)− L (h)) + η (A (h)−A (ℓ))︸ ︷︷ ︸
<0

− Γ
η(1 + r)

∆

(√
1 + h−

√
1 + ℓ

)
︸ ︷︷ ︸

>0

> 0.

(15)

Liquidity providers in the high-fee pool face both lower adverse selection and rebalancing costs.

Therefore, the low-fee pool can only be chosen in equilibrium if it offers a higher liquidity yield,

specifically if L(ℓ) − L(h) > 0, and if the intensity of news η is sufficiently low. Otherwise, all

liquidity providers prefer to supply tokens to the high-fee pool if the participation constraint is

satisfied. Further, equation (15) highlights the economies of scale embedded in liquidity provision

with fixed rebalancing costs. That is, if a liquidity provider of size q prefers the low fee pool, then

any liquidity provider with a larger endowment, q̃ > q, also prefers the low fee pool.

Proposition 1 characterizes the equilibrium liquidity provision.

Proposition 1. i. If η > L(l)−L(h)
L(l)−L(h)+A(l)−A(h) , then all LPs with qi > q

h
deposit liquidity on the

high fee pool.

ii. Otherwise, there exists a unique fragmented equilibrium characterized by marginal trader
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q⋆t > q
h
which solves

q⋆t = Γ
η(1 + r

(√
1 + h−

√
1 + ℓ

)
)

∆ [(1− η) (L (ℓ)− L (h)) + η (A (h)−A (ℓ))]
(16)

such that all LPs with qi ∈
(
q
h
, q⋆t

]
deposit liquidity in the high fee pool and all LPs with

qi > q⋆t choose the low fee pool.

Figure 3 illustrates the equilibrium regions in Proposition 1. When news intensity η is high, or

pool H offers a substantially higher fee than pool L, liquidity suppliers gravitate towards pool H,

resulting in a single-maker equilibrium. Conversely, a lower η translates to lower adverse selection

costs. If this is the case, or if the fee differential between the two pools is low, liquidity providers

with large endowments q migrate to the lower-fee pool to compete for order flow from small traders,

causing liquidity to fragment between the two pools.

Figure 3: Fragmented and single-pool equilibria
This figure plots the existence conditions for a fragmented market equilibrium, as described in Proposition 1, for
various values of the news intensity (η) on the y-axis and liquidity fee on pool L on the x-axis. Parameter values:
r = 0.001, h = 2, λ = 1, η = 0.1, and ∆ = 1.1 (1 + r)

√
1 + h.

Proposition 2 establishes the impact of gas prices on the two pools’ liquidity market shares. We

can compute the liquidity market share of the low-fee pool in a fragmented equilibrium as

wℓ =
exp

(
− qt−q

h
λ

)
(qt + λ)

q
h
+ λ

≤ 1, (17)

with equality for Γ = 0. That is, as fixed costs drop to zero, the low fee pool asymptotically captures
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the full market share.

Proposition 2. In equilibrium, the market share of the low fee pool wℓ decreases in the gas cost (Γ).

We stress the critical role of fixed gas costs in driving market fragmentation. Since liquidity fee

revenues and adverse selection costs are distributed pro-rata, in the absence of gas fees, all liquidity

providers (LPs) would converge on a single pool — the one offering the optimal balance between fee

yield and informational costs. For instance, if Γ = 0, all LPs would select pool L if the news arrival

rate is sufficiently low, as defined by η ≤ L(l)−L(h)
L(l)−L(h)+A(l)−A(h) , or choose pool H otherwise. It is the

introduction of fixed costs that drives LPs to segregate into different pools based on their size.

Figure 4 shows that the market share of the low fee pool decreases in the gas cost Γ. A larger

gas price increases the costs of re-balancing upon the arrival of large enough news, everything else

equal, and incentivizes smaller LPs to switch from the low fee pool to the high fee pool, since the

arbitrageurs are less likely to fully consume liquidity there. Further, the right panel illustrates the

extensive margin effect of gas prices: any increase in gas costs leads to a decrease in aggregate

liquidity supply as some LP with low endowments are driven out of the market (that is, the threshold

q
h
increases in Γ).

Figure 4: Liquidity shares and gas costs
This figure illustrates the equilibrium liquidity market shares (left panel) and the aggregate liquidity supply on the
two pools (right panel), as a function of the gas fee Γ. Parameter values: r = 0.001, h = 2, ℓ = 1, λ = 1, η = 0.1, and
∆ = 1.1 (1 + r)

√
1 + h.

2.2 Pool fragmentation and market quality

We measure market quality by the realized gains from trade of liquidity traders. If the asset is

traded on a sequence of pools, where fk and Tk represent the fees and liquidity deposits on pool k,
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respectively, the expected gains from trade for liquidity traders are

GainsFromTrade ({fk}k) = vE

[∑
k

τ⋆ (fk, δ)× δ

]
, (18)

where τ⋆ (δ) = Tk min

{
1, 1+r

r max

{
0, 1−

√
1+fk
1+δ

}}
is the optimal LT trade size, as defined in

equation (7).

Suppose an asset is traded on a single pool that imposes a liquidity fee f . From equation (18) it

follows that the gains from trade for an LT with private value 1 + δ are equal to

GainsFromTrade (f | δ) = vδTf min

{
1,

1 + r

r
max

{
0, 1−

√
1 + f

1 + δ

}}
. (19)

The total token supply on the single pool equals Tf = e
−q

f
λ
(
q
f
+ λ

)
, where q

f
is the marginal

liquidity provider such that all LPs with endowment qi > q
f
join the pool. Here, the magnitude of

the liquidity fee drives the trade-off between the participation of liquidity providers (LP) and trading

costs. A lower fee f results in fewer LPs offering liquidity, a lower token supply Tf , which limits

gains from trade for liquidity traders. In contrast, a higher fee increases trading costs, potentially

outweighing the benefits of increased LP participation.

Proposition 3. For any single-pool fee f ≥ 0, there exists a set of fees {h, ℓ} for a two-pool fragmented

market, where h = f and h > ℓ, that guarantees equal or higher gains from trade in a fragmented

market compared to the single-pool market.

Proposition 3 suggests that fragmentation with multiple fee levels improves market quality.

Specifically, it is always possible to devise a fee structure in a fragmented market that yields

(weakly) higher gains from trade than a single-fee market. The logic is as follows: First, the highest

fee in the fragmented market is set equal to the single pool fee, ensuring that the marginal LP

participating the market is the same across both scenarios (i.e., the LP with endowment q
h
). This

condition guarantees the same aggregate liquidity supply in fragmented and non-fragmented markets.

Second, a lower fee is then chosen for another pool to attract liquidity providers with higher token

endowments, resulting in larger trade sizes per unit of supplied liquidity. This combination of larger

liquidity trades and unchanged aggregate liquidity supply leads to higher gains from trade in a

fragmented market.
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Figure 5: Gains from trade and market structure
The figure plots the expected gains from trade across LTs,

GainsFromTrade =

∫ ∆2−1

0

vδτ⋆ (δ)ϕ (δ) dδ,

on both a single pool with a high fee as well as on fragmented pools, as a function of the gas cost Γ. Parameter values:
r = 0.001, h = 2, ℓ = 1, λ = 1, η = 0.1, and ∆ = 1.1 (1 + r)

√
1 + h.

Figure 5 illustrates the result. As gas price increase, the gains from trade drop in both single-pool

and fragmented markets, primarily because more LPs are priced out which results in lower liquidity

supply and higher price impact. Nevertheless, irrespective of the level of gas costs, the gains from

trade are higher in the fragmented market.

We note that the argument discussed in this section is valid for any single-fee pool, including an

optimally designed one. In essence, if a fragmented fee structure can be designed to achieve higher

gains from trade compared to an arbitrary single-pool fee, then a fee structure that dominates the

optimally set single-pool fee achieves higher gains from trade than any single-fee pool.

2.3 Model implications and empirical predictions

Prediction 1: The liquidity market share of the low-fee pool decreases in the gas fee Γ.

Prediction 1 follows directly from Proposition 2 and Figure 4. A higher gas price increases the

cost of liquidity re-balancing. Given that re-balancing is more frequently required in the low-fee

pool due to more intense arbitrage activity, liquidity providers, particularly those with smaller

endowments, optimally migrate to the high-fee pool in response to a gas cost increase.

Prediction 2: LPs on the low-fee pool make larger liquidity deposits than LPs on the high-fee pool.
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Prediction 2 follows from the equilibrium discussion in Proposition 1. Liquidity providers with

large token endowments (qi > qt) deposit them in the low-fee pool since they are better positioned

to actively manage liquidity due to economies of scale. LPs with lower endowments (qi ≤ qt) either

stay out of the market or choose pool H which allows them to offer liquidity in a more passive

manner. Figure 6 illustrates this prediction by overlaying optimal pool choices on the distribution

of LP endowments. Low-endowment LPs (in blue) that are being rationed out of the market due to

high gas cost, medium-endowment LPs (gray) that deposit liquidity on pool H, and high-endowment

LPs (red) that choose the low-fee pool L.

Figure 6: Liquidity supply on fragmented markets
This figure illustrates the endowment distribution of LPs and their choice of pools in a fragmented market. First,
liquidity providers to the left of q

h
do not provide liquidity on either pool. Next, LPs to the left (right) of the marginal

trader q⋆t provide liquidity on pool H (pool L, respectively). r = 0.001, h = 2, ℓ = 1, λ = 1, η = 0.1, Γ = 20, and
∆ = 1.1 (1 + r)

√
1 + h.

Prediction 3: The average trade size is higher on pool H than on pool L. At the same time, trading

volume is higher on pool L than on pool H.

Next, Prediction 3 deals with differences between incoming trades on the two liquidity pools. If

liquidity traders and arbitrageurs find it optimal to trade on pool H since δ > h, then they would

also trade on pool L since h > ℓ and therefore δ > ℓ. However, the opposite is not true: LTs and

arbitrageurs with δ ∈ [ℓ, h) only trade on pool L. In equilibrium, only a fraction of traders with

sufficiently high private values are drawn to pool H.

Prediction 4: In a fragmented market equilibrium, the liquidity yield is higher on the low fee pool

than on the high fee pool.

Prediction 4 is a consequence of Proposition 1. The high fee pool offers better protection against

adverse selection and re-balancing costs. If the low fee pool attracts a positive market share, then it
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necessarily compensates with a higher liquidity yield.

Prediction 5: The average liquidity deposit on both the low- and- high fee pool increases with gas

costs.

An increase in the gas cost Γ has two effects: first, the LPs with the lowest endowments on pool

L switch to pool H. As a result, the average deposit on pool L increases. Second, the LPs with low

endowments on pool H may leave the market. Both channels translate to a higher average deposit

on pool H, which experiences an inflow (outflow) of relatively high (low) endowment LP following

an increase in gas costs.

Prediction 6: LPs re-balance liquidity more frequently on the low-fee than on the high-fee pool.

Liquidity providers re-balance their positions in a pool charging a fee f only when the magnitude

of news exceeds a threshold, specifically if δ > (1 + f)(1 + r)2 − 1. The likelihood of re-balancing

given the news is (1 −
√
1+f(1+r)

∆ ). Consequently, the duration of a liquidity cycle, expressed as
1

η(1−
√
1+f(1+r)

∆
)
, increases in the pool fee level.

Prediction 7: Adverse selection cost is higher on the low fee pool than on the high fee pool.

This prediction follows directly from Lemma 2: a higher pool fee serves as a deterrent to

arbitrageurs, particularly if the size of news remains below a threshold.

3 Data and descriptive statistics

3.1 Sample construction

We obtain data from the Uniswap V3 Subgraph, covering all trades, liquidity deposits (referred

to as “mints”), and liquidity withdrawals (referred to as “burns”) on 4,069 Uniswap v3 pools. The

data spans from the protocol’s launch on May 4, 2021, up until July 15, 2023. Each entry in our

data includes a transaction hash that uniquely identifies each trade and liquidity update on the

Ethereum blockchain. Additionally, it provides details such as trade price, direction, and quantity,

along with quantities and price ranges for each liquidity update. Moreover, the data also includes

wallet addresses associated with initiating each transaction, akin to anonymous trader IDs. The

Subgraph data we obtained also provides USD-denominated values for each trade and liquidity mint.

We further collect daily pool snapshots from the Uniswap V3 Subgraph, including the end-of-day

pool size in Ether and US Dollars, and summary price information (e.g., open, high, low, and closing

prices for each pool).

To enhance our dataset, we combine the Subgraph data with public Ethereum data available on

Google Big Query to obtain the position of each transaction in its block, as well as the gas price
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limit set by the trader and the amount of gas used. Finally, we obtain block-by-block liquidity

snapshot data across multiple price ranges from Kaiko.

There are no restrictions to list a token pair on Uniswap. Some pools might therefore be used for

experiments, or they might include untrustworthy tokens. Following Lehar and Parlour (forthcoming),

we remove pools that are either very small or that are not attracting an economically meaningful

trading volume. We retain liquidity pools that fulfill the following four criteria: (i) have at least

one interaction in more than 100 days in the sample, (ii) have more than 500 liquidity interactions

throughout the sample, (iii) have an average daily liquidity balance in excess of US$100,000, and

(iv) capture more than 1% of trading volume for a particular asset pair. We exclude burn events

with zero liquidity withdrawal in both base and quote assets, as traders use them solely to collect

fees without altering their liquidity position.

These basic screens give us a baseline sample of 274 liquidity pools covering 242 asset pairs, with

combined daily dollar volume of $1.12 billion and total value locked (i.e., aggregate liquidity supply)

of $2.53 billion as of July 15, 2023. We capture 24,202,803 interactions with liquidity pool smart

contracts (accounting for 86.04% of the entire universe of trades and liquidity updates). Trading

and liquidity provision on Uniswap is heavily concentrated: the five largest pairs (USDC-WETH,

WETH-USDT, USDC-USDT, WBTC-WETH, and DAI-USDC) account on average for 86% of

trading volume and 63% of supplied liquidity.6

3.2 Liquidity fragmentation patterns

For 32 out of the 242 asset pairs in our baseline sample, liquidity supply is fragmented across two

pools with different fees – either with 1 and 5 bps fees (5 pairs), 5 and 30 bps fees (6 pairs), or 30

and 100 bps fees (21 pairs).7 Despite being fewer in number, fragmented pairs are economically

important: they account on average for 95% of the capital committed to Uniswap v3 and for

93% of its dollar trading volume. All major token pairs such as WETH-USDC, WETH-USDT, or

WBTC-WETH trade on fragmented pools.

For each fragmented liquidity pair, we label the low and the high fee liquidity pool to facilitate

analysis across assets. For example, the low and high liquidity fees for USDC-WETH are 5 and 30

bps, respectively, but only 1 and 5 bps for a lower volatility pair such as USDC-USDT. We refer to

non-fragmented pools as single (i.e., the unique pool for an asset pair).

We aggregate all interactions with Uniswap smart contracts into a panel across days and liquidity

6WETH and WBTC stand for “wrapped” Bitcoin and Ether. Plain vanilla Bitcon and Ether are not compliant with
the ERC-20 standard for tokens, and therefore cannot be directly used on decentralized exchanges’ smart contracts.
USDC (USD Coin), USDT (Tether), and DAI are stablecoins meant to closely track the US dollar.

7In some cases, more than two pools are created for a pair – e.g., for USDC-WETH there are four pools with 1, 5,
30, and 100 bps liquidity fees. In all cases however, two pools heavily dominate the others: As described in Section 3.1
we filter out small pools with less than 1% volume share or less than $100,000 liquidity deposits.
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pools. To compute the end-of-day pool size, we account for all changes in token balances, across all

price ranges. There are three possible interactions: A deposit or “mint” adds tokens to the pool,

a withdrawal or “burn” removes tokens, whereas a trade or “swap” adds one token and removes

the other. We track these changes across to obtain daily variation in the quantity of tokens on

each pool. We obtain dollar values for the end-of-day liquidity pool sizes, intraday trade volumes,

and liquidity events from the Uniswap V3 Subgraph. To determine a token’s price in dollars, the

Subgraph searches for the most liquid path on Uniswap pools to establish the token’s price in Ether

and subsequently converts the Ether price to US dollars.

Table 2 reports summary statistics across pools with different fee levels. High-fee pools attract

on average 58% of total liquidity supply, significantly more than their low-fee counterparts ($46.50

million and $33.78 million, respectively), but only capture 20.74% percent of the trading volume

(computed as 8,071.24/(8,071.24+30,848.79) from the first column of Table 2). Consistent with our

theoretical predictions, low-fee pools attract five times as many trades as high-fee competitors (610

versus 110 average trade count per day). At the same time, the average trade on a high-fee pool is

twice as large ($14,490) than on a low-fee pool ($6,340).

The distribution of mint sizes is heavily skewed to the right, with 6.6% of deposits exceeding

$1 million. There are large differences across pools – the median LP deposit on the low-fee pool is

$15,680, twice as much as the median deposit on the high-fee pool ($7,430). At the same time, the

number of liquidity providers on high-fee pools is 51% higher than on low-fee pools (10.08 unique

addresses per day on high-fee pools versus only 6.68 unique address on high-fee pools).

One concern with measuring average mint size is just-in-time liquidity provision (JIT). As

discussed for example in Capponi, Jia, and Zhu (2024), JIT liquidity providers submit very large and

short-lived deposits to the pool to dilute competitors on an incoming large trade; they immediately

withdraw the balance in the same block after executing the trade. In our sample, JIT liquidity

provision is not economically significant, accounting for less than 1% of aggregate trading volume.

However, it has the potential to skew mint sizes to the right, particularly in low-fee pools, without

providing liquidity to the market at large. We address this issue by (i) filtering out JIT mints using

the algorithm in Appendix D and (ii) taking the median liquidity mint size at day-pool level rather

than the mean.

Further, we follow Augustin, Chen-Zhang, and Shin (2022) to compute the daily liquidity fee

yield as the product between pool’s fee tier and the ratio between trading volume and the lagged

total value locked (TVL). That is,

Liquidity yield = liquidity feei ×
Volumei,t
TVLi,t−1

, (20)

for pool i and day t. The average daily yield is slightly higher on low-fee pools, at 11.72 basis points,

compared to 9.69 basis points on high-fee pools.
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Table 2: Descriptive statistics
This table reports descriptive statistics for variables used in the empirical analysis. Pool size is defined as the total
value locked in the pool’s smart contract at the end of each day. We compute the balance on day t as follows: we
take the balance at day t− 1 and add (subtract) liquidity deposits (withdrawals) on day t, as well as accounting for
token balance changes due to trades. The liquidity balance on the first day of the pool is taken to be zero. End of day
balances are finally converted to US dollars. Daily volume is computed as the sum of US dollar volume for all trades
in a given pool and day. Liquidity share (Volume share) is computed as the ratio between a pool size (trading volume)
for a given fee level and the aggregate size of all pools (trading volumes) for the same pair in a given day. Trade size
and Mint size are the median trade and liquidity deposit size on a given pool and day, denominated in US dollars.
Trade count represents the number of trades in a given pool and day. LP wallets counts the unique number of wallet
addresses interacting with a given pool in a day. The liquidity yield is computed as the ratio between the daily trading
volume and end-of-day TVL, multiplied by the fee tier. The price range for every mint is computed as the difference
between the top and bottom of the range, normalized by the range midpoint – a measure that naturally lies between
zero and two. Loss-versus-rebalancing is computed as the permanent price impact of swaps with a one-hour horizon.
The impermanent loss is computed as in Heimbach, Schertenleib, and Wattenhofer (2022) for a position in the range
of 95% to 105% of the current pool price, with a forward-looking horizon of one hour. Finally, mint-to-burn and
burn-to-mint times are defined as the time between a mint (burn) and a subsequent burn (mint) by the same address
in the same pool, measured in hours. Mint-to-burn and burn-to-mint are recorded on the day of the final interaction
with the pool.

Statistic Pool fee Mean Median St. Dev. Pctl(25) Pctl(75) N

Pool size ($M) Low 33.78 2.05 96.91 0.30 14.12 20,151
High 46.50 3.85 95.73 1.43 27.51 20,151
Single 3.89 0.84 13.56 0.26 2.62 130,767

Liquidity share (%) Low 39.52 35.52 32.53 7.37 72.16 20,151
High 60.48 64.48 32.53 27.84 92.63 20,151

Daily volume ($000) Low 30,848.79 619.77 118,908.80 6.18 5,697.30 20,151
High 8,071.24 114.96 36,777.38 7.83 1,882.12 20,151
Single 915.73 36.07 6,059.78 1.93 277.00 130,767

Volume share Low 66.51 88.38 38.50 29.43 98.48 18,001
High 42.20 23.83 41.18 3.19 95.03 18,058

Trade size ($000) Low 6.34 2.20 13.36 0.61 6.03 18,001
High 14.49 2.76 33.19 0.82 10.48 18,060
Single 4.12 1.32 11.03 0.45 3.79 113,362

Mint size ($000) Low 820.84 15.68 13,114.83 3.78 58.98 10,640
High 1,001.10 7.43 13,807.10 1.55 30.52 10,370
Single 96.97 6.93 622.12 1.42 30.39 45,300

Trade count Low 610.61 95 1,518.52 12 414 20,151
High 110.59 26 490.29 8 89 20,151
Single 63.94 19 194.03 4 55 130,767

LP wallets Low 6.68 1 16.01 0 6 20,151
High 10.08 1 37.79 0 5 20,151
Single 1.57 1.17 1.19 1.00 1.85 55,580

Liquidity yield (bps) Low 11.72 2.58 56.31 0.16 9.08 20,122
High 9.69 1.65 51.44 0.15 6.40 20,130
Single 17.90 1.94 90.18 0.18 8.58 130,433

Price range Low 0.39 0.30 0.37 0.13 0.56 11,866
High 0.61 0.54 0.44 0.32 0.84 12,195
Single 0.68 0.58 0.52 0.27 1.02 55,580

Loss-versus-rebalancing (bps) Low 14.24 1.32 35.20 0.02 9.22 20,151
High 7.85 0.84 23.15 0.03 4.87 20,151

Impermanent loss (bps) Low 8.46 1.84 27.88 0.06 7.23 20,118
High 7.37 1.33 27.21 0.05 5.93 20,132
Single 17.20 2.44 71.34 0.17 11.37 130,340

Mint-to-burn (hrs) Low 450.40 59.82 1,341.67 19.70 243.83 10,186
High 952.14 165.61 2,076.42 39.66 711.67 9,979
Single 760.26 126.64 1,778.62 27.01 563.50 39,735

Burn-to-mint (hrs) Low 105.29 0.20 521.62 0.08 5.63 8,279
High 224.26 0.32 941.31 0.10 27.78 7,289
Single 177.74 0.23 803.40 0.07 20.64 27,477
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Figure 7: Liquidity supply on decentralized exchanges
This figure plots the empirical distributions of variables in the pool-day panel, across low and high fee pools (for
fragmented pairs) as well as single pools in pairs that are not fragmented. In each box plot, the median is marked as a
vertical line; the box extends to the quartiles of the data set, whereas the whiskers extend to an additional 1.5 times
the inter-quartile range.

(a) Pool size and trading volume

(b) Average liquidity mint and trade size

(c) Number of liquidity providers and trades

A salient observation in Table 2 is that non-fragmented pairs (“single” pools) are significantly

smaller – on average less than 10% of the pool size and trading volume of fragmented pairs. Average

trade and mint sizes are correspondingly lower as well. The evidence suggests that pairs for which

there is significant trading interest, and therefore potentially a broader cross-section of potential

liquidity providers, are more likely to become fragmented.

Figure 7 plots the distributions of our empirical measures across low- and high-fee liquidity pools.

It suggest a sharp segmentation of liquidity supply and trading across pools. High-fee pools attract

smaller liquidity providers by mint size, and end up with a larger aggregate size than their low-fee

counterparts. Trading volume is similarly segmented: most small value trades are executed on the

cheaper low-fee pools, making up the majority of daily volume for a given pair. High-value trades,

of which there are fewer, are more likely to (also) execute on high-fee pools.
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Our theoretical framework in Section 2 implies that liquidity suppliers manage their positions

more actively in the low- than the high-fee pool. Figure 8 provides suggestive evidence for liquidity

cycles of different lengths in the cross-section of pools. Liquidity on decentralized exchanges is

significantly more passive than on traditional equity markets. That is, liquidity providers do not

often manage their positions at high frequencies. The median time from a mint (deposit) to a

subsequent burn (withdrawal) from the same wallet on the same pool ranges from 59.82 hours, or

2.49 days, on low-fee pools to 165.61 hours, or 6.9 days on high-fee pools.

Figure 8: Liquidity cycles on high- and low-fee pools
The top panel plots the distribution of liquidity cycle times from mint to subsequent burn (left) and from burn to
subsequent mint (right) for the same LP wallet address in the same pool. In each box plot, the median is marked as a
vertical line; the box extends to the quartiles of the data set, whereas the whiskers extend to an additional 1.5 times
the inter-quartile range. The bottom panel plots the probability that the LP position is out of range and therefore does
not earn fees. A position is considered to be “out of range” when the minimum and maximum prices at which the LP
is willing to provide liquidity do no straddle the current price on the pool. We plot the probability separately for low-
and high- fees, as well as conditional on whether the event is a burn (liquidity withdrawal) or mint (liquidity deposit).

When do LPs re-balance their positions? In 53% of cases, liquidity providers only withdraw

tokens from the pool when their position exits the price range that allows them to collect fees.

Concretely, LPs specified price range for liquidity provision does not straddle the most recent

reference price of the pool. The scenario mirrors a limit order market where a liquidity provider’s

outstanding limit orders are deep in the book, such that she doesn’t stand to earn the spread on

the marginal incoming trade. In this case, a rational market maker might want to cancel their
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outstanding order and place a new one at the top of the book. This is exactly the pattern we

observe on Uniswap: the subsequent mint following a burn straddles the new price 77% of the time –

LPs reposition their liquidity around the current prices to keep earning fees on incoming trades.

Moreover, re-balancing is swift – the median time between a burn and a subsequent mint is just 12

minutes (0.20 hours).

The empirical pattern in Figure 8 echoes the re-balancing cycles as described in Section 2.

Liquidity providers deposit tokens in Uniswap pools to trade against uninformed order flow. They

only re-balance when their position becomes out-of-range and no longer earns fees. Once this

happens, LPs quickly adjust their position in a matter of minutes – by removing stale liquidity

and adding a new position around the current price. The re-balancing cycle tends to be longer on

high-fee pools, where arbitrageurs only move the price outside the range if the asset value innovation

is large enough.

We note that LPs do not seem to “race” to update liquidity upon information arrival as in Budish,

Cramton, and Shim (2015). First, they very rarely manage their position intraday. Second, LPs on

Uniswap typically do not remove in-range liquidity that stands to trade first against incoming order

flow and therefore bears the highest adverse selection risk. Our results are consistent with Capponi

and Jia (2021) who theoretically argue that LPs have low incentives to compete with arbitrageurs

on news arrival, as well as with Capponi, Jia, and Yu (2022) who find no evidence of traders racing

to trade on information on Uniswap v2. In our model, LPs tend to re-balance their position after

an arbitrageur executed their trade.

Next, we examine the behavior of liquidity takers (LT). According to our model, small orders are

typically routed to low-fee pools, while larger orders are split between both low- and high-fee pools.

Figure 9 provides empirical evidence supporting this claim. We use liquidity snapshot data from

Kaiko on USDC-WETH pools to simulate the optimal routing strategy for trades of various sizes for

the last block of each day in our sample. This simulation considers both the price impact of trades

and the associated liquidity fees. In line with our model, we find that trades smaller than 150 ETH

(approximately $450,000) optimally route over 90% of their size to the low-fee pool. Conversely,

larger trades distribute their volume more evenly, with up to 40% being executed in high-fee pools.
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Figure 9: Optimal order routing on Uniswap v3 pools
This figure displays the optimal order split for purchasing ETH using USDC across various trade sizes, on USDC-WETH
Uniswap v3 pools with liquidity fees of 5 and 30 basis points. Order execution is optimized to minimize trading costs,
encompassing both price impact and liquidity fees. We use liquidity distribution snapshots data from Kaiko, and
focus on the last Ethereum block of each day from May 4, 2021, to July 15, 2023.

Measuring gas prices. Each interaction with smart contracts on the Ethereum blockchain requires

computational resources, measured in units of “gas.” Upon submitting a mint or burn transaction to

the decentralized exchange, each liquidity provider specifies their willingness to pay per unit of gas,

that is they bid a “gas price.” Traders are likely to bid higher prices for more complex transactions

or if they require a faster execution. To generate a conservative daily benchmark for the gas price,

we compute the average of the lowest 1000 user gas bids for mint and burn interactions on day t,

across all liquidity pools in the benchmark sample.

Figure 10 showcases the significant fluctuation in gas costs for Uniswap liquidity transactions

over time. Gas costs denominated in USD are influenced by two primary factors: network congestion,

which leads to variations in gas prices measured in Ether, and the fluctuation of Ether’s value

relative to the US dollar. On a monthly average, gas costs peaked at above US$100 in November

2021 and have since plummeted to around US$6 from the second half of 2022, albeit with occasional

spikes.
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Figure 10: Gas costs for Uniswap v3 mint/burn transactions
The figure illustrates the daily average gas cost on mint/burn transactions in Uniswap v3 pools. The gas cost is
computed as the average of the lowest 1000 user gas bids for mint and burn interactions on each day, across all liquidity
pools in the benchmark sample.

4 Empirical results

4.1 Liquidity supply on high- and low-fee pools

To formally test the model predictions and quantify the differences in liquidity supply across

fragmented pools, we build a panel data set for the 32 fragmented pairs in our sample where the

unit of observation is pool-day. We estimate linear regressions of liquidity and volume measures on

liquidity fees and gas costs:

yijt = α+β0dlow-fee, ij+β1GasPricejt+β2GasPricejt×dlow-fee, ij+
∑

βkControlsijt+ θj + δw+ εijt,

(21)

where y is a variable of interest, i indexes liquidity pools, j runs over asset pairs, and t and w

indicates days and weeks, respectively. The dummy dlow-fee, ij takes the value one for the pool with

the lowest fee in pair j and zero else.

Further, our set of controls includes pair and week fixed effects, the log aggregate trading volume

and log liquidity supply (i.e., total value locked) for day t across all pools i. Volume and liquidity are

measured in US dollars. We also control for daily return volatility, computed as the range between

the daily high and low prices for a given pair j (following Alizadeh, Brandt, and Diebold, 2002):

Volatilityjt =
1

2
√
log 2

log

(
Highjt
Lowjt

)
. (22)
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To measure volatility for fragmented pairs that actively trade in multiple pools, we select the pool

with the highest trading volume for a given day.

Consistent with Figure 7, we show in Table 3 that most of the capital deployed to provide

liquidity for a given pair is locked in high-fee pools. At the same time, low-fee pools attract much

larger trading volume. Models (1) and (5) show that the average low-fee pool attracts 39.5% of

liquidity supply for the average pair (that is, equal to (100−20.92)/2) while it executes 62% (i.e.,

(100+24.62)/2) of the total trading volume. At a first glance, it would seem that a majority of capital

on decentralized exchanges is inefficiently deployed in pools with low execution probability. We will

show that, in line with our model, the difference is driven by heterogeneous rebalancing costs across

pools, leading to the formation of LP clienteles.

The regression results in Table 3 support Prediction 1, stating that market share differences

between pools are linked to variation in fixed transaction costs on the blockchain. A one-standard

deviation increase in gas prices leads to a 4.63 percentage point increase in the high-fee liquidity

share. The results suggests that blockchain transaction costs have an economically meaningful and

statistically significant impact on liquidity fragmentation. In line with the theoretical model in

Section 2, a jump in gas prices leads to a reshuffling of liquidity supply from low- to high-fee pools.

Evidence suggests that a higher gas price leads to a 6.52% lower volume share for the low-fee

pool. This outcome is natural, as the incoming order flow is optimally routed to the high-fee pool,

following the liquidity providers.

What drives the market share gap across fragmented pools? In Table 4 we document stark

differences between the characteristics of individual orders supplying or demanding liquidity on

pools with low and high fees. On the liquidity supply side, model (1) in Table 4 shows that the

average liquidity mint is 107.5% larger on low-fee pools, which supports Prediction 2 of the model.8

At the same time, there are 3.40 fewer unique wallets (Model 5) providing liquidity on the low-fee

pool – that is, a 34% relative difference between high- and low-fee pools.

On the liquidity demand side, trades on the low-fee pool are 25.91% smaller (Model 2), consistent

with Prediction 3. However, the low-fee pool executes almost three times the number of trades

(i.e., trade count is 177% higher from Model 4) and has 143% higher volume than the high-fee pool

(Model 3).

Next, in line with Prediction 4, low-fee pools generate a higher liquidity yield. On average,

liquidity providers on low-fee pools earn 2.03 basis points higher revenue than their counterparts on

high-fee pools (Model 6), indicating significant positive returns resulting from economies of scale.

Our findings (Model 7) indicate that liquidity providers on low-fee pools select price ranges that

are 30% (=0.18/0.59) narrower when minting liquidity compared to those on high-fee pools. This

8Since all dependent variables are measured in natural logs, the marginal impact of a dummy coefficient β is
computed

(
eβ − 1

)
× 100 percent.
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Table 3: Liquidity pool market shares and gas prices
This table reports the coefficients of the following regression:

MarketShareijt = α+ β0dlow-fee, ij + β1GasPricejt + β2GasPricejt × dlow-fee, ij +
∑

βkControlsijt + θj + εijt

where the dependent variable is the liquidity or trading volume market share for pool i in asset pair j on day t.
dlow-fee, ij is a dummy that takes the value one for the pool with the lowest fee in pair j and zero else. GasPricejt
is the average of the lowest 100 bids on liquidity provision events across all pairs on day t, standardized to have a
zero mean and unit variance. Volume is the natural logarithm of the sum of all swap amounts on day t, expressed in
thousands of US dollars. Total value locked is the natural logarithm of the total value locked on Uniswap v3 pools
on day t, expressed in millions of dollars.Volatility is computed as the daily range between high and low prices on
the most active pool for a given pair.All regressions include pair and week fixed-effects. Robust standard errors in
parenthesis are clustered by week and ***, **, and * denote the statistical significance at the 1, 5, and 10% level,
respectively. The sample period is from May 4, 2021 to July 15, 2023.

Liquidity market share (%) Volume market share (%)
(1) (2) (3) (4) (5) (6) (7) (8)

dlow-fee -20.92*** -20.92*** -20.92*** -20.94*** 24.62*** 24.63*** 24.62*** 24.71***
(-27.42) (-27.41) (-27.42) (-23.95) (20.55) (20.56) (20.55) (18.54)

Gas price × dlow-fee -4.63*** -4.62*** -4.63*** -6.52*** -6.52*** -6.52***
(-7.32) (-7.32) (-7.32) (-5.92) (-5.92) (-5.92)

Gas price 2.31*** 2.31*** 2.31*** 3.63*** 3.61*** 3.61***
(7.32) (7.32) (7.32) (7.33) (7.30) (7.26)

Volume 0.00 0.00 0.00 0.00 -0.19** -0.20** -0.19** -0.12
(0.65) (1.33) (0.65) (0.66) (-2.54) (-2.61) (-2.50) (-1.56)

Total value locked -0.00 -0.00 -0.00 0.58 0.58 0.44
(-0.58) (-0.06) (-0.64) (1.44) (1.44) (1.10)

Volatility -0.29 -0.29 -0.28 -1.15*** -1.15*** -1.13**
(-0.90) (-0.90) (-0.82) (-2.74) (-2.74) (-2.56)

Constant 60.45*** 60.46*** 60.45*** 60.46*** 41.96*** 41.99*** 41.96*** 41.96***
(158.00) (158.46) (158.00) (137.54) (69.99) (70.22) (70.02) (62.81)

Pair FE Yes Yes Yes Yes Yes Yes Yes Yes
Week FE Yes Yes Yes Yes Yes Yes Yes Yes
Observations 40,288 40,288 40,288 40,288 36,059 36,059 36,059 36,059
R-squared 0.10 0.10 0.10 0.09 0.13 0.13 0.13 0.12

Robust t-statistics in parentheses. Standard errors are clustered at week level. *** p<0.01, ** p<0.05, * p<0.1
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Table 4: Fragmentation and order flow characteristics
This table reports the coefficients of the following regression:

yijt = α+ β0dlow-fee, ij + β1GasPricejtdlow-fee, ij + β2GasPricejt × dhigh-fee, ij +
∑

βkControlsijt + θj + εijt

where the dependent variable yijt can be (i) the log median mint size, (ii) the log median trade size, (iii) the log
trading volume, (iv) the log trade count log(1 + #trades), (v) count of unique LP wallets interacting with a pool in a
given day, (vi) the liquidity yield in bps for pool i in asset j on day t, computed as in equation (20), and (vii) the
average liquidity mint price range for pool i in asset j on day t. Price range is computed as the difference between the
top and bottom of the range, normalized by the range midpoint – a measure that naturally lies between zero and
two. dlow-fee, ij is a dummy that takes the value one for the pool with the lowest fee in pair j and zero else. dhigh-fee, ij

is defined as 1− dlow-fee, ij. GasPricejt is the average of the lowest 100 bids on liquidity provision events across all
pairs on day t, standardized to have a zero mean and unit variance. Volume is the natural logarithm of the sum of
all swap amounts on day t, expressed in thousands of US dollars. Total value locked is the natural logarithm of the
total value locked on Uniswap v3 pools on day t, expressed in millions of dollars. Volatility is computed as the daily
range between high and low prices on the most active pool for a given pair. All regressions include pair and week
fixed-effects. Robust standard errors in parenthesis are clustered by week and ***, **, and * denote the statistical
significance at the 1, 5, and 10% level, respectively. The sample period is from May 4, 2021 to July 15, 2023.

Mint size Trade size Volume # Trades # Wallets Liquidity yield Price range
(1) (2) (3) (4) (5) (6) (7)

dlow-fee 0.73*** -0.30*** 0.89*** 1.02*** -3.40*** 2.03*** -0.18***
(12.27) (-10.05) (14.23) (32.95) (-5.00) (3.60) (-41.84)

Gas price × dlow-fee 0.37*** 0.08*** -0.03 -0.22*** -3.00*** 3.57** -0.00
(4.96) (3.75) (-0.95) (-7.29) (-3.43) (2.30) (-0.47)

Gas price × dhigh-fee 0.58*** 0.17*** 0.24*** 0.07** -2.89*** 5.57*** -0.03***
(7.52) (8.81) (5.95) (2.46) (-3.15) (2.83) (-4.65)

Volume 0.37*** 0.16*** 0.43*** 0.20*** 1.22*** 1.01 -0.01**
(8.68) (21.38) (15.27) (13.85) (6.56) (0.81) (-2.56)

Total value locked -0.16 0.11*** 0.23** -0.01 -1.86 -13.42 -0.02
(-1.30) (3.54) (1.99) (-0.18) (-0.99) (-1.09) (-0.99)

Volatility -0.04 -0.01 -0.07 0.01 -0.09 1.18** 0.02***
(-1.11) (-1.34) (-1.38) (0.88) (-1.03) (2.21) (3.98)

Constant 1.88*** 1.64*** 5.27*** 3.26*** 10.12*** 10.01*** 0.59***
(58.27) (111.47) (168.58) (209.84) (28.65) (26.04) (184.91)

Pair FE Yes Yes Yes Yes Yes Yes Yes
Week FE Yes Yes Yes Yes Yes Yes Yes
Observations 21,000 36,059 36,059 40,288 40,288 40,252 24,058
R-squared 0.26 0.53 0.55 0.52 0.37 0.09 0.42

Robust t-statistics in parentheses. Standard errors are clustered at week level.
*** p<0.01, ** p<0.05, * p<0.1
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pattern aligns with the capability of large LPs to adjust their liquidity positions frequently, enabling

more efficient capital concentration. Similarly, Caparros, Chaudhary, and Klein (2023) report a

higher concentration of liquidity in pools on alternative blockchains like Polygon, known for lower

transaction costs than Ethereum.

The results point to an asymmetric match between liquidity supply and demand across pools.

On low-fee pools, a few LPs provide large chunks of liquidity for the vast majority of incoming small

trades. Conversely, on high-fee pools there is a sizeable mass of small liquidity providers that mostly

trade against a few large incoming trades.

How does variation in fixed transaction costs impact the gap between individual order size across

pools? We find that increasing the gas price by one standard deviation leads to higher liquidity

deposits on both the low- and the high-fee pools (14.2% and 30.1% higher, respectively).9 The

result supports Prediction 5 of the model. Our theoretical framework implies that a larger gas price

leads to some (marginal) LPs switching from the low- to the high-fee pool. The switching LPs have

low capital endowments relative to their low-fee pool peers, but higher than LPs on the high-fee

pool. Therefore, the gas-driven reshuffle of liquidity leads to a higher average endowment on both

high- and low-fee pools. Consistent with the model, a higher gas price leads to fewer active liquidity

providers, particularly on low-fee pools. Specifically, a one-standard increase in gas costs leads to

a significant decrease in the number of LP wallets interacting daily with low- and high-fee pools,

respectively (Model 5).

While a higher gas price is correlated with a shift in liquidity supply, it has a muted impact on

liquidity demand on low-fee pools. A higher gas cost is associated with 7.6% larger trades (Model

2), likely as traders aim to achieve better economies of scale. At the same time, the number of

trades on the low-fee pool drops by 19.7% (Model 4) – since small traders might be driven out of

the market. The net of gas prices effect on aggregate volume on the low-fee pool is small and not

statistically significant (Model 3). The result matches our model assumption that the aggregate

order flow on low-fee pool is not sensitive to gas prices.

On the high-fee pool, a higher gas price is also associated with a higher trade size, but also an

increase in traded volume. As gas prices rise, liquidity providers switch from low- to high-fee pools.

The outcome is greater depth and reduced price impact for liquidity demanders on high fee pools,

which leads to higher trading volume.

9The relative effects are computed as 0.37/(1.88+0.73) = 13.8% for low pools and 0.58/1.88 = 30.85% for high-fee pools,
respectively.
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Table 5: Liquidity flows and gas costs on fragmented pools
This table reports the coefficients of the following regression:

yijt = α+ β0dlow-fee, ij + β1GasPricejtdlow-fee, ij + β2GasPricejt × dhigh-fee, ij +
∑

βkControlsijt + θj + εijt

where the dependent variable yijt can be (i) the aggregate dollar value of mints (in logs), or (vi) a dummy variable
taking value one hundred if there is at least one mint on liquidity pool i in asset j on day t. dlow-fee, ij is a dummy
that takes the value one for the pool with the lowest fee in pair j and zero else. dhigh-fee, ij is defined as 1− dlow-fee, ij.
GasPricejt is the average of the lowest 100 bids on liquidity provision events across all pairs on day t, standardized
to have a zero mean and unit variance. Volume is the natural logarithm of the sum of all swap amounts on day t,
expressed in thousands of US dollars. Total value locked is the natural logarithm of the total value locked on Uniswap
v3 pools on day t, expressed in millions of dollars.Volatility is computed as the daily range between high and low
prices on the most active pool for a given pair.All regressions include pair and week fixed-effects. Robust standard
errors in parenthesis are clustered by week and ***, **, and * denote the statistical significance at the 1, 5, and 10%
level, respectively. The sample period is from May 4, 2021 to July 15, 2023.

Daily mints (log US$) Prob (at least one mint)
(1) (2) (3) (4) (5) (6)

dlow-fee 0.43*** 0.43*** 0.43*** 1.38* 1.37* 1.38*
(6.07) (6.07) (6.07) (1.71) (1.71) (1.71)

Gas price × dlow-fee -0.35*** -0.35*** -0.46*** -6.02*** -6.01*** -4.58***
(-8.50) (-8.50) (-7.14) (-9.13) (-9.13) (-6.76)

Gas price × dhigh-fee 0.11** 0.11** -1.43** -1.43**
(2.15) (2.15) (-2.57) (-2.57)

Volume 0.26*** 0.26*** 0.26*** 0.96*** 0.96*** 0.96***
(14.78) (14.77) (14.78) (3.93) (3.93) (3.93)

Total value locked -0.07 -0.07 -0.07 1.47 1.47 1.47
(-0.78) (-0.78) (-0.78) (1.01) (1.00) (1.01)

Volatility -0.01 -0.01 0.26 0.26
(-0.68) (-0.68) (0.59) (0.59)

Gas price 0.11** -1.43**
(2.15) (-2.57)

Constant 2.61*** 2.61*** 2.61*** 51.44*** 51.43*** 51.44***
(73.46) (73.49) (73.46) (126.67) (127.28) (126.67)

Pair FE Yes Yes Yes Yes Yes Yes
Week FE Yes Yes Yes Yes Yes Yes
Observations 40,288 40,288 40,288 40,288 40,288 40,288
R-squared 0.47 0.47 0.47 0.28 0.28 0.28

Robust t-statistics in parentheses. Standard errors are clustered at week level.
*** p<0.01, ** p<0.05, * p<0.1

In Table 5, we shift the analysis from individual orders to aggregate daily liquidity flows to

Uniswap pools. We find that higher gas prices lead to a decrease in liquidity inflows, but only on the

low fee pools. A one standard deviation increase in gas prices leads to a 29.5% drop in new liquidity
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deposits by volume (Model 1) and an 6.02% drop in probability of having at least one mint (Model

4) on the low-fee pool. However, the slow-down in liquidity inflows is less evident in high fee pools.

While an increase in gas prices reduce the probability of liquidity inflows by 1.43%, it actually leads

to a 11.6% increase in the daily dollar inflow to the pool. Together with the result in Table 4 that

the size of individual mints increases with gas prices, our evidence is consistent with the model

implication that higher fixed transaction costs change the composition of liquidity supply on the

high-fee pool, with small LP being substituted by larger LPs switching over from the low-fee pool.

4.2 Re-balancing activity on high- and low-fee pools

Next, we test Prediction 6 on the duration of liquidity re-balancing cycles on fragmented pools.

Since the descriptive statistics in Table 2 suggest that LPs manage their positions over multiple

days, we cannot accurately measure liquidity cycles in a pool-day panel. Instead, we use intraday

data on liquidity events (either mints or burns) to measure the duration between two consecutive

opposite-sign interactions by the same Ethereum wallet with a liquidity pool: either a mint followed

by a burn, or vice-versa.

To ensure consistency with the model described in Section 2, we conduct our analysis on the

entire sample as well as on a sub-sample focused solely on re-balancing events where the liquidity

position falls out of range (i.e., the price range set by the LP does not straddle the current price and

therefore the LP does not earn fees). We further introduce wallet fixed effects to soak up variation in

reaction times across traders, and winsorize the liquidity cycle duration at the 1% level to mitigate

the influence of extreme values.

Table 6 presents the results. Liquidity updates on decentralized exchanges are very infrequent,

as times elapsed between consecutive interactions are measured in days or even weeks. In line with

Prediction 6, we find evidence for shorter liquidity cycles on low-fee pools. The average time between

consecutive mint and burn orders is 22.05% shorter on the low-fee pool (from Model 2, the relative

difference is 112.42 hours/509.19 hours).

We repeat the analysis above with burn-to-mint times as the dependent variables. The burn-

to-mint time measures the speed at which LPs deposit liquidity at updated prices after removing

(out-of-range) positions. Our findings reveal that LPs in low-fee pools replenish liquidity 63% faster

than those in high-fee pools. This supports the notion that LPs in low-fee environments are larger,

more sophisticated market participants.
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Table 6: Liquidity cycles on fragmented pools
This table reports the coefficients of the following regression:

yijtk = α+ β0dlow-fee, ij + β1GasPricejtdlow-fee, ij + β2GasPricejt × dhigh-fee, ij +
∑

βkControlsijt + θj + εijt

where the dependent variable yijt can be (i) the mint-to-burn time, (ii) the burn-to-mint time, measured in hours, for
a transaction initiated by wallet k on day t and pool i trading asset j. The mint-to-burn and burn-to-mint times
are computed for consecutive interactions of the same wallet address with the liquidity pool. dlow-fee, ij is a dummy
that takes the value one for the pool with the lowest fee in pair j and zero else. dhigh-fee, ij is defined as 1− dlow-fee, ij.
GasPricejt is the average of the lowest 100 bids on liquidity provision events across all pairs on day t, standardized
to have a zero mean and unit variance. Volume is the natural logarithm of the sum of all swap amounts on day t,
expressed in thousands of US dollars. Total value locked is the natural logarithm of the total value locked on Uniswap
v3 pools on day t, expressed in millions of dollars. Volatility is computed as the daily range between high and low
prices on the most active pool for a given pair. Position out-of-range is a dummy taking value one if the position
being burned or minted is out of range, that is if the price range selected by the LP does not straddle the current pool
price. All variables are measured as of the time of the second leg of the cycle (i.e., the burn of a mint-burn cycle). All
regressions include pair, week, and trader wallet fixed-effects. Robust standard errors in parenthesis are clustered by
day and ***, **, and * denote the statistical significance at the 1, 5, and 10% level, respectively. The sample period is
from May 4, 2021 to July 15, 2023.

Mint-burn time (hours) Burn-mint time (hours)
Out-of-range positions Full sample

(1) (2) (3) (4) (5) (6)

dlow-fee -110.94*** -112.42*** -99.74*** -100.17*** -157.95*** -159.71***
(-7.49) (-7.69) (-8.86) (-8.94) (-10.59) (-10.81)

Gas price × dlow-fee -14.27 -6.54 -16.65** -15.41* -11.29 2.95
(-1.49) (-0.68) (-2.13) (-1.98) (-1.65) (0.40)

Gas price × dhigh-fee -19.57** -12.83 -14.44** -13.42* -10.52* 1.96
(-2.34) (-1.57) (-2.04) (-1.89) (-1.69) (0.32)

Volume -16.71*** -5.87 -24.84***
(-3.24) (-1.15) (-4.10)

Total value locked -35.14 -53.17* -12.71
(-1.05) (-1.70) (-0.52)

Volatility -3.48** -2.11*** -2.99***
(-2.49) (-2.75) (-3.36)

Constant 509.19*** 509.66*** 497.18*** 497.00*** 248.00*** 250.13***
(61.93) (58.34) (91.65) (90.60) (29.91) (30.27)

Pair FE Yes Yes Yes Yes Yes Yes
Week FE Yes Yes Yes Yes Yes Yes
Trader wallet FE Yes Yes Yes Yes Yes Yes
Observations 215,454 215,454 405,586 405,584 265,848 265,848
R-squared 0.87 0.87 0.82 0.82 0.37 0.37

Robust t-statistics in parentheses. Standard errors are clustered at week level.
*** p<0.01, ** p<0.05, * p<0.1
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4.3 Adverse selection costs across low- and high-fee pools

Finally, we test Prediction 7 of our model, which states that LP on the low-fee pool face higher

adverse selection costs. Our main metric for informational costs is the loss-versus-rebalancing (LVR),

as defined in Milinois, Moallemi, Roughgarden, and Zhang (2023). The measure is equivalent to the

adverse selection component of the bid-ask spread in equity markets. To calculate it, for each swap

j exchanging ∆xj for ∆yj in a pool with assets x and y, we use:

LVRj = dj ×∆xj(pswap,j − p′j), (23)

where dj is one for a “buy” trade (∆xj < 0) and minus one for a “sell” trade (∆xj > 0). The effective

swap price is pswap,j = −∆yj
∆xj

, and p′j represents a benchmark price.

We use two benchmark prices p′j in our analysis. The first, p′j = p∆t=0
j , is the pool’s equilibrium

price immediately after a swap. The resulting LVR metric captures both temporary and permanent

price impact, driven by uninformed and informed trades, respectively, and represents an upper

bound for LP’s adverse selection cost.

The second benchmark is the liquidity-weighted average price across Uniswap v3 pools, measured

with a one-hour delay after the swap (p′j = p∆t=1h
j ). This approach assumes that any price deviations

caused by uninformed liquidity trades are corrected by arbitrageurs within an hour, as supported by

Lehar and Parlour (forthcoming). Thus, the LVR metric derived using this benchmark captures

only the permanent price impact, a more precise measure of adverse selection cost for liquidity

providers.10

To compute LVR for each day t and liquidity pool i, we aggregate the loss-versus-balancing for

each swap within a day. We subsequently winsorize our measures at the 0.5% and 99.5% quantiles

to remove extreme outliers. The resulting sum is normalized by dividing it by the total value locked

(TVL) in the pool at day’s end:

LVRi,t =

∑
j LVRj,i,t

TVLi,t
, (24)

which ensures that the LVR metric is comparable across pools trading different token pairs.

We complement our analysis with the calculation of impermanent loss (IL), an additional metric

for assessing adverse selection costs. Impermanent loss is defined as the negative return from

providing liquidity compared to simply holding the assets outside the exchange and marking them

to market as prices change (see, for example, Aoyagi, 2020; Barbon and Ranaldo, 2021).

10Our methodology is equivalent to the one in Milinois, Moallemi, Roughgarden, and Zhang (2023) under two
assumptions. First, liquidity providers can re-balance their position following each swap. Second, we assume that
our two benchmarks for p′j , derived from decentralized exchange data, closely track the fundamental value of the
token. This perspective aligns with Han, Huang, and Zhong (2022), who also note that centralized exchange prices are
subject to manipulative practices such as wash trading. Further, our selection of benchmarks reflects the fact that our
sample includes several token pairs not traded on major centralized exchanges such as Binance.
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The key distinction between IL and loss-versus-rebalancing (LVR) measures lies in their assump-

tions about liquidity providers’ strategies (Milinois, Moallemi, Roughgarden, and Zhang, 2023).

While LVR assumes that providers actively re-balance their holdings by mirroring decentralized

exchange trades on centralized exchanges at the fundamental value to hedge market risk, IL is based

on a more passive approach where providers maintain their positions without active re-balancing.

Loss-versus-rebalancing is a function of the entire price path, reflecting constant rebalancing by

liquidity providers. In contrast, impermanent loss is determined solely by the initial and final prices

of the assets.

We obtain hourly liquidity snapshots from the Uniswap V3 Subgraph to calculate impermanent

loss for a theoretical symmetric liquidity position. This position is set within a price range of[
1
αp, αp

]
, centered around the current pool price p, with α set to 1.05. We set a one-hour horizon

to measure changes in position value, aligning with the time horizon used for the LVR metric. In

Appendix E, we present the exact formulas for calculating impermanent loss on Uniswap V3, based

on the methodology described by Heimbach, Schertenleib, and Wattenhofer (2022).

Table 7 presents our empirical results. In line with Milionis, Moallemi, and Roughgarden (2023),

all price impact measures — that is, the immediate and one-hour horizon LVR and the impermanent

loss — are significantly larger in low-fee pools. This indicates that a higher liquidity fee indeed

acts as barrier to arbitrageurs. Specifically, the permanent price impact, measured by the one-hour

horizon LVR, is 6.39 basis points or 81% larger in low-fee pools. The total price impact, represented

by the after-swap LVR metric, is 3.5 times larger in low-fee pools. The wide gap between permanent

and total price impact highlights the substantially higher volume of uninformed trading in low-fee

pools. Our secondary measure of adverse selection, the impermanent loss at 5% around the current

price, is also 15% higher on low- than high-fee pools.

We note that an increase in gas prices leads to a 3.51 wider gap in total price impact but a

0.75 bps narrower gap in permanent price impact between the high- and low-fee pools. The result

suggests that a higher gas price primarily discourages uninformed traders, rather than arbitrageurs,

from trading on high-fee pools.

Finally, in Models (7) and (8) of Table 7 we explore whether various arbitrage frictions lead

to price discrepancies between high- and low-fee pools. For this purpose, we collect hourly price

data from Binance for the largest four pairs by trading volume: WBTC-WETH, USDC-WETH,

WETH-USDT, and USDT-USDC. We subsequently compute daily averages of hourly price deviations

between centralized and decentralized exchanges. The analysis reveals that the average hourly price

deviation across centralized and decentralized exchanges is 0.60%. Notably, there is no significant

difference in price deviations between low- and high-fee pools. The result suggests that arbitrage

activities remain efficient despite the differences in trading costs between these pools.
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Table 7: Adverse selection costs on high- and low-fee pools
This table presents regression results that analyze adverse selection costs in fragmented Uniswap v3 pools. For columns
(1) through (4), the dependent variable is loss-versus-rebalancing (LVR), as defined in equation (24). We use the
one-hour horizon benchmark (p∆t=1h

j ) in models (1) and (2) to measure permanent price impact, and the immediate,
same-block price benchmark (p∆t=0

j ) in models (3) and (4) to measure total price impact. For columns (5) and (6),
the dependent variable is the impermanent loss for a symmetric liquidity position at ±5% centered around the current
pool price. The average impermanent loss is calculated for each day, based on Ethereum blocks mined within that day.
The impermanent loss computation uses a one-hour liquidity provider horizon, comparing current pool prices with
those one hour later. For columns (7) and (8), the dependent variables are the liquidity (TVL) and volume share of
the pool, measured in percent. Finally, in columns (9) and (10) the dependent variable is the absolute deviation of
the Uniswap pool price from Binance prices, sampled hourly, and measured in percent. dlow-fee, ij is a dummy that
takes the value one for the pool with the lowest fee in pair j and zero else. GasPricejt is the average of the lowest
100 bids on liquidity provision events across all pairs on day t, standardized to have a zero mean and unit variance.
Volume is the natural logarithm of the sum of all swap amounts on day t, expressed in thousands of US dollars. Total
value locked is the natural logarithm of the total value locked on Uniswap v3 pools on day t, expressed in millions of
dollars. When LVR is an explanatory variable, it is calculated using the one-hour ahead benchmark price. Volatility is
computed as the daily range between high and low prices on the most active pool for a given pair. All regressions
include pair and week fixed-effects. Robust standard errors in parenthesis are clustered by week, and ***, **, and *
denote the statistical significance at the 1, 5, and 10% level, respectively. The sample period is from May 4, 2021 to
July 15, 2023.

LVR (1h horizon) LVR (after swap) Impermanent loss CEX price deviation
Permanent price impact Total price impact

(1) (2) (3) (4) (5) (6) (7) (8)

dlow-fee 6.39*** 6.39*** 29.78*** 29.67*** 1.08*** 1.13*** 0.06 0.04
(16.57) (17.05) (14.86) (14.95) (5.72) (6.18) (1.51) (1.33)

Gas price × dlow-fee -0.75** 3.51** -0.01 0.08
(-2.05) (2.10) (-0.05) (1.09)

Gas price 2.61*** 6.16** 3.71*** -0.03
(2.74) (2.53) (3.76) (-0.28)

Volume 3.22*** 8.67*** 1.81*** 0.22***
(8.15) (6.61) (6.22) (4.74)

Total value locked 0.53 -2.12 1.93 -0.39***
(0.14) (-0.34) (0.74) (-4.05)

Volatility 1.85*** 4.23*** 6.69** 1.04***
(2.87) (3.17) (2.61) (3.51)

Constant 7.85*** 7.86*** 8.88*** 8.97*** 7.37*** 7.51*** 0.60*** 0.67***
(40.71) (36.89) (8.87) (8.88) (77.84) (61.32) (30.71) (35.75)

Pair FE Yes Yes Yes Yes Yes Yes Yes Yes
Week FE Yes Yes Yes Yes Yes Yes Yes Yes
Observations 40,302 40,288 40,302 40,288 40,250 40,248 5,207 5,207
R-squared 0.14 0.15 0.09 0.10 0.09 0.11 0.10 0.11

Robust t-statistics in parentheses. Standard errors are clustered at week level.
*** p<0.01, ** p<0.05, * p<0.1
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Figure 11: Price impact and price deviations across high- and low-fee pools
This figure plots the average total and permanent price impact, liquidity yield, and price deviation from centralized
exchanges across low and high fee pools for fragmented pairs.

Figure 11 graphically illustrates the result, contrasting permanent price impact measures against

the liquidity yield, as calculated in equation (20). Notably, before accounting for gas costs, we

observe that liquidity providers in low-fee pools experience losses on average: the average daily

permanent price impact in these pools is 14.21 basis points, which exceeds the fee revenue of 11.71

bps. In contrast, liquidity providers in high-fee pools approximately break even before considering

gas costs: the fee revenue amounts to 9.69 bps, which is slightly higher than the permanent price

impact of 7.85 bps. One should keep in mind, however, that the magnitude of losses from adverse

selection depends on the horizon at which we measure the loss-versus-rebalancing.

5 Conclusion

This paper argues that fixed costs associated with liquidity management drive a wedge between large

(institutional) and small (retail) market makers. In the context of blockchain-based decentralized

exchanges, the most evident fixed cost is represented by gas fees, where market makers compensate

miners and validators for transaction processing in proof-of-work, respectively in proof-of-stake

blockchains. Innovative solutions such as Proof of Stake (PoS) consensus algorithms and Layer

2 scaling aim to address the concern of network costs. However, even if gas fees were eliminated

entirely, individual retail traders still encounter disproportionate fixed costs in managing their

liquidity, such as the expenditure of time and effort.

Our paper highlights a trade-off between capital efficiency and the fixed costs of active manage-

ment. During the initial phase of decentralized exchanges, such as Uniswap V2, liquidity providers
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were not able to set price limits, resulting in an even more passive liquidity supply and fewer

incentives for active position management. However, the mechanism implied that incoming trades

incurred significant price impact. To enhance the return on liquidity provision and reduce price

impact on incoming trades, modern decentralized exchanges (DEXs) have evolved to enable market

makers to fine-tune their liquidity positions, albeit at the expense of more active management.

We show, both theoretically and empirically, that fixed costs of liquidity management promote

market fragmentation across decentralized pools and generate clienteles of liquidity providers. Large

market makers, likely institutions and funds, have stronger economies of scale and can afford to

frequently manage their positions on very active low fee markets, while bearing higher adverse

selection risk. On the other hand, smaller retail liquidity providers become confined to high fee

markets with scant activity, trading off a lower execution probability against reduced adverse

selection and lower gas costs to update their positions. Since large liquidity providers can churn

their position at a faster pace, two thirds of the trading volume interacts with less than half the

capital locked on Uniswap V3.

Our findings indicate that substantial fixed costs can hinder the participation of small market

makers in the forefront of liquidity provision, where active order management is crucial. Instead,

smaller liquidity providers tend to operate on the market maker “fringe,” opting for a lower execution

probability in exchange for better prices. The results are particularly relevant the context of a

resurgence in retail trading activity and the ongoing evolution of technology that fosters market

structures aimed at enhancing broader access to financial markets.
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A Liquidity provision mechanism on Uniswap v3

In this appendix, we walk through a numerical example to illustrate the mechanism of liquidity

provision and trading on Uniswap V3 liquidity pools. To facilitate understanding, we highlight

the similarities and differences between the Uniswap mechanism and the familiar economics of a

traditional limit order book.

Let pc = 1500.62 be the current price of the ETH/USDT pair. Traders can provide liquidity on

Uniswap V3 pools at prices on a log-linear tick space. In particular, consecutive prices are always θ

basis point apart: pi = 1.0001θi, where θ is the tick spacing. For the purpose of the example, we

take θ = 60. Consequently, the current price of 1500.62 corresponds to a tick index of c = 73140.

Figure A.1 illustrates three ticks on grid below and above the current price of ETH/USDT 1500.62.

Figure A.1: ETH/USDT price grid around pc

Price

Tick index

1500.62
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1491.64

730807302072960 73200 73260 73320

1482.721473.85 1509.65 1518.73 1527.87

Two-sided liquidity provision. Trader A starts out with a capital of USDT 20,000 and wants to

provide liquidity over the price range [1491.64, 1527.87], a range which spans four ticks. Liquidity

provision over a range that includes the current price corresponds to posting quotes on both the bid

and ask side of a traditional limit order book, where the current price of the pool corresponds to

the mid-point of the book.

1. Bid quotes: trader A deposits USDT over the price range [1491.64, 1500.62). This action is

equivalent to submitting a buy limit order with a bid price of 1491.64. An incoming Ether

seller can swap their ETH for the USDT deposited by A, generating price impact until the

limit price of 1491.64 is reached.

2. Ask quotes: at the same time, trader A deposits ETH over three ticks: [1500.62, 1509.65),

[1509.65, 1518.73), and [1518.73, 1527.87). The action corresponds to submitting three sell

limit orders with ask prices 1509.65, 1518.73, and 1527.87, respectively. Incoming Ether buyers

can swap USDT for trader A’s ETH.

In the Uniswap V3 protocol, deposit amounts over each tick [pi, pi+1) must satisfy

ETH deposit over [pi, pi+1): xi = L

(
1

√
pi

− 1
√
pi+1

)
(A.1)

USDT deposit over [pi, pi+1): yi = L (
√
pi+1 −

√
pi) , (A.2)
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where L (“liquidity units”) is a scaling factor proportional to the capital committed to the liquidity

position. The scaling factor L is pinned down by setting the total committed capital equal to the

sum of the positions (in USDT), that is pc
∑

i xi +
∑

i yi. In our example,

1500.62× LA ×
(

1√
1500.62

− 1√
1527.87

)
+ LA ×

(√
1500.62−

√
1491.64

)
= 20000, (A.3)

leading to LA = 43188.6. We the value of LA into (A.1) and conclude that trader A deposits

5,013.38 USDT over [1491.64, 1500.62) and ETH 9.99 over [1500.62, 1527.87) (approximately ETH

3.33 over each tick size covered).

One-sided liquidity provision. Trader B has USDT 20,000 and wants to post liquidity over the range

[1509.65, 1527.87), which does not include the current price. This action corresponds to posting ask

quotes to sell ETH deep in the book, at price levels 1518.73 and 1527.87. Liquidity is not “active”

– that is, the quotes are not filled – until the existing depth at 1509.65 is consumed by incoming

trades.

We use equation (A.1) to solve for the amount of liquidity units provided by B:

1500.62× LB ×
(

1√
1509.65

− 1√
1527.87

)
= 20000, (A.4)

which leads to LB = 86589.4. Trader B deposits 6.67 ETH on each of the two ticks covered by the

chosen range.
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Figure A.2: ETH/USDT pool state after liquidity provision choices

Figure A.2 illustrates market depth after A and B deposit liquidity in the pool. The current

price of the pool is equivalent to a midpoint in traditional limit order markets. The “ask side” of the

pool is deeper, consistent with both liquidity providers choosing ranges skewed towards prices above

the current midpoint. Liquidity is uniformly provided over ticks – that is, each trader deposits an

equal share of their capital at each price tick covered by their price range.

Trading, fees, and price impact. Suppose now that a trader C wants to buy 10 ETH from the pool.

For each tick interval [pi, pi+1), price impact is computed using a constant product function over

virtual reserves: (
x+

L
√
pi+1

)
︸ ︷︷ ︸

Virtual ETH reserves

(y + L
√
pi)︸ ︷︷ ︸

Virtual USDT reserves

= L2, (A.5)

where x and y are the actual ETH and USDT deposits in that tick range, respectively. Virtual

reserves are just a mathematical artifact: they extend the physical (real) deposits as if liquidity

would be uniformly distributed over all possible prices on the real line. Working with constant

product functions over real reserves is not feasible: in our example, the product of real reserves is

zero throughout the order book (since only one asset is deposited in each tick range).
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Let τ = 1% denote the pool fee that serves as an additional compensation for liquidity providers.

That is, if the buyer pays to pay ∆y USDT to purchase a quantity ∆x ETH, he needs to effectively

pay ∆y (1 + τ). As per the Uniswap V3 white paper, liquidity fees are not automatically deposited

back into the pool.

1. Tick 1: [1500.62, 1509.65). Trader C first purchases 3.33 ETH at the first available tick above

the current price (equivalent to the “best ask”). To remove the ETH, he needs to deposit ∆y1

USDT, where ∆y1 solves:(
3.33− 3.33 +

LA√
1509.65

)(
0 + ∆y1 + LA

√
1500.62

)
= L2

A, (A.6)

which leads to ∆y1 = 5026.19 USDT. Trader C pays an average price of 50216.19/3.33=1507.86

USDT for each unit of ETH purchased. Further, he pays a fee of 50.26 USDT to liquidity

provider A (the only liquidity provider at this tick).

The new current price is given by the ratio of virtual reserves,

p′ =
∆y1 + LA

√
1500.62

3.33− 3.33 + LA√
1509.65

= 1509.65, (A.7)

that is the next price on the tick grid since C exhausts the entire liquidity on [1500.62, 1509.65).

2. Tick 2: [1509.65, 1518.73). Trader C still needs to purchase 6.67 ETH at the next tick level

(where the depth is 10 ETH). The liquidity level at this tick is LA + LB, that is the sum of

liquidity provided by A and B. To remove the 6.67 ETH from the pool, he needs to deposit

∆y2, where(
10− 6.67 +

LA + LB√
1518.73

)(
0 + ∆y2 + (LA + LB)

√
1509.65

)
= (LA + LB)

2 . (A.8)

It follows that trader C purchases 6.67 ETH by depositing ∆y2 = 10089.12 USDT, at an

average price of 1512.61. The pool price is updated as the ratio of virtual reserves:

p′′ =
∆y2 + (LA + LB)

√
1509.65

10− 6.67 + LA+LB√
1518.73

= 1515.7. (A.9)

The updated price is in between the two liquidity ticks, since not all depth on this tick level

was exhausted in the trade. Following the swap, liquidity on the tick range [1509.65, 1518.73)

is composed of both assets: that is 10089.12 USDT and 10-6.67=3.33 ETH.

Finally, trader C pays 100.89 USDT as liquidity fees (1% of the trade size), which are

distributed to A and B proportionally to their liquidity share. That is, A receives a fraction
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LA
LA+LB

of the total fee (33.57 USDT), whereas B receives 67.32 USDT.

Figure A.3 illustrates the impact of the swap. Within tick [1500.62, 1509.65), A sells 3.33 ETH

and buys 5026 USDT. Unlike on limit order books, the execution does not remove liquidity from

the book. Rather, A’s capital is converted from one token to another and remains available to trade.

This feature underscores the passive nature of liquidity supply on decentralized exchanges. Mapping

the concepts to traditional limit order book, this mechanism would imply that every time a market

maker’s sell order is executed at the ask, a buy order would automatically be placed on the bid side

of the market.

The final price of 1517.70 lies within the tick [1509.65, 1518.73), rather than on its boundary.

Trader C only purchases 6.66 ETH out of 10 ETH available within this price interval. The implication

is that liquidity on [1509.65, 1518.73) contains both tokens: 3.33 ETH (the amount that was not

swapped by C) as well as 10089.12 USDT that C deposited in the pool.
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Figure A.3: Swap execution and price impact
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The bottom panel of Figure A.3 shows the price impact of the swap. From equation (6.15) in

the Uniswap V3 white paper, we can solve for the price within tick [pmin, pmax) with liquidity L,

following the execution of a buy order of size x:

p (x) =
pminL

2(
L−√

pminx
)2 . (A.10)

As expected, the price impact of a swap decreases in the liquidity available L – each ETH unit

purchased by C has a smaller impact on the price once tick 1509.65 is crossed and the market

becomes deeper.
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B Notation summary

Variable Subscripts

Subscript Definition

T and N Pertaining to the token and numeraire assets, respectively.

L and H Pertaining to the low- and high-fee pool, respectively.

LP Pertaining to liquidity providers.

LT Pertaining to liquidity traders.

A Pertaining to arbitrageurs.

Exogenous Parameters

Parameters Definition

vt Common value of the token at time t.

η, 1− η Poisson arrival rate of news and private value shocks, respectively.

δ Size of common or private value shock.

∆ Parameter governing the probability distribution of shocks, ϕ (δ) = 1
2∆

√
1+δ

.

ℓ, h Liquidity fee on the low- and high-fee pool.

f Liquidity fee on a non-fragmented pool.

qi Token endowment of liquidity provider i, exponentially distributed with scale parameter λ.

λ Aggregate liquidity supply if all LPs join the market.

Γ Gas price on the blockchain.

r Width of the price range
[

v
(1+r)2

, v(1 + r)2
]
.

Endogenous Quantities

Variable Definition

Tk Equilibrium liquidity supply on exchange k ∈ {L,H}.
τ (δ) Optimal trade size for LT or A with value shock δ.

L (fk) Liquidity yield (fee revenue per unit of liquidity supplied) on pool with fee fk.

A (fk) Adverse selection cost for LP per unit of liquidity supplied on pool with fee fk.

C (fk) Liquidity re-balancing cost on pool with fee fk.

q⋆t Token endowment of the LP who is indifferent between pools.

q
k

Lowest token endowment deposited on pool k (from break-even condition).

πk Expected liquidity provider profit on exchange k.

wk Liquidity market share for pool with fee k.
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C Proofs

Lemma 1

Proof. We take the expectation of fee revenues over the size of private value shocks δ and obtain:

EProfitLiqi,k = 2qivfk ×
{

P
(
fk < δ ≤ (1 + fk)(1 + r)2 − 1

)
× 1 + r

r
E

[√
1 + δ

1 + fk
− 1 | fk < δ ≤ (1 + fk)(1 + r)2 − 1

]
+

+ P
(
δ > (1 + fk)(1 + r)2 − 1

)
× (1 + r)

}
= qi v

fk(r + 1)
(
2∆− r

√
fk + 1− 2

√
fk + 1

)
∆︸ ︷︷ ︸

≡L(fk)

, (C.1)

where we define L (fk) as the liquidity yield: i.e., the per-unit profit from liquidity provision in pool k.

To explore how the liquidity revenue changes with respect to the pool fee, we differentiate L with respect

to f :
∂L (f)

∂f
= −

(r + 1)
(
2
(
−2∆

√
f + 1 + r + 2

)
+ 3f(r + 2)

)
4∆

√
f + 1

. (C.2)

Starting with f = 0 and given that ∆ > 1 + r (by Assumption 1), the derivative at f = 0 is positive:

∂L(f)
∂f

∣∣∣∣
f=0

=
(r + 1)(2∆− r − 2)

2∆
> 0, (C.3)

indicating that liquidity revenue increases with pool fee at this point. The derivative has roots:

f1,2 =
−6(r + 2)2 + 8∆2 ± 4

√
4∆4 + 3∆2(r + 2)2

9(r + 2)2
, (C.4)

where the smallest root f1 is negative and therefore not relevant. We need to show that the largest root f2 is

always positive, defining the threshold f .

For this, consider the numerator of f2, labeled g(r,∆):

g(r,∆) = 8∆2 + 4
√
4∆4 + 3∆2(r + 2)2 − 6(r + 2)2.

This function has three roots in r, all of which are negative: r = −2, r = −2(1+∆), and r = 2(∆− 1). Since

these roots are negative, for r ≥ 0, g does not change sign and it is sufficient to examine g(0,∆):

g(0,∆) = 8∆2 + 4
√
∆2(∆2 + 3)− 6. (C.5)

This is positive for any ∆ ≥ 1, confirming that the largest root f2 is positive and hence, f exists and is

positive. This completes the proof that the liquidity revenue increases with the pool fee until f and decreases

with pool fee for f > f .
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Lemma 2

Proof. The cost of adverse selection for pool k after evaluating equation (11) is

A (fk) = v

(
∆−

√
1 + f(1 + r)

) (
∆2 +∆

√
f + 1 (1 + r) + (f + 1)(r − 2)(r + 1)

)
+ (f + 1)3/2r2(r + 1)

3∆
.

(C.6)

We aim to demonstrate that A(f) decreases as f increases. To do this, we calculate the partial derivative of

A(f) with respect to f :

∂A (f)

∂f
=

(r + 1)
(
−2∆

√
f + 1 + f(r + 2) + r + 2

)
2∆

√
f + 1

< 0 (C.7)

The derivative is negative if ∆ > 1
2

√
1 + f(2 + r). Given that 1

2 (2 + r) < 1+ r, it follows that A(f) decreases

for any ∆ > (1 + r)
√
1 + f , consistent with our assumption on ∆.

Proposition 1

Proof. First, consider the case in which η > L(l)−L(h)
L(l)−L(h)+A(l)−A(h) holds. This implies qt < 0, and consequently,

πL − πH < 0 for all q. Under this scenario, liquidity providers universally favor pool H over pool L. They

supply liquidity on pool H if and only if their participation constraint is satisfied, that is if qi > q
h
.

Conversely, if η ≤ L(l)−L(h)
L(l)−L(h)+A(l)−A(h) , then qt ≥ 0, allowing for a fragmented equilibrium. If qt ≥ 0, then

πL has a steeper slope compared to πH : profit increases more rapidly with liquidity supply in pool L than in

pool H. There are two potential outcomes.

1. Dominance of pool L. If 0 < qt < q
ℓ
< q

h
, as shown in the left-hand side panel of the diagram below,

then the low-fee pool L captures the entire market share for any qi that yields positive profits. The

condition q
ℓ
< q

h
is equivalent to

q
ℓ
< q

h
⇔ C (h)

C (ℓ)
>

(1− η)L (h)− ηA (h)

(1− η)L (ℓ)− ηA (ℓ)
, (C.8)

which translates to η > C(ℓ)L(h)−C(h)L(ℓ)
C(ℓ)[L(h)+A(h)]−C(h)[L(ℓ)+A(ℓ)] . Since we require η ≤ L(ℓ)

L(ℓ)+A(ℓ) by Assumption

2, it must be that L (ℓ)A (h) < L (h)A (ℓ).

However, the parameter regions never overlap, ruling out this scenarios: we will show that L (ℓ)A (h)−
L (h)A (ℓ) > 0. To see this, we first note that η ≤ L(l)−L(h)

L(l)−L(h)+A(l)−A(h) is equivalent to:

η ≤
3
(
h
(
2∆−

√
h+ 1r − 2

√
h+ 1

)
− ℓ

(
2∆−

√
ℓ+ 1r − 2

√
ℓ+ 1

))
(r + 2)

(√
h+ 1 (h− 2)−

√
ℓ+ 1 (ℓ− 2)

) , (C.9)

which implies that h
(
2∆−

√
h+ 1r − 2

√
h+ 1

)
− ℓ

(
2∆−

√
ℓ+ 1r − 2

√
ℓ+ 1

)
> 0 since the denomi-

nator is always positive. We use the inequality in (C.9) and obtain that

L (ℓ)A (h)− L (h)A (ℓ) >
1 + r

6∆2
g, (C.10)
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where

g ≡ (1 + r)l
(
2∆−

√
l + 1 (r + 2)

)
︸ ︷︷ ︸

>0

× (C.11)

×

(h− ℓ)∆− (r + 2)
(√

h+ 1−
√
l + 1

)
+ h

(
2∆−

√
h+ 1 (r + 2)

)
− l

(
2∆−

√
l + 1 (r + 2)

)
︸ ︷︷ ︸

>0

 > 0,

(C.12)

given Assumption 1 and equation (C.9). To see that (h− ℓ)∆ − (r + 2)
(√

h+ 1−
√
l + 1

)
> 0,

we first note the expression increases in ∆ and is therefore larger than
√
h+ 1(r + 1)(h − l) + (r +

2)
(√

l + 1−
√
h+ 1

)
for ∆ >

√
1 + h (1 + r). The latter expression increases in h and equals zero for

h = ℓ.The latter expression increases in h and equals zero for h = ℓ.

Therefore, there are no parameter values for which 0 < qt < q
ℓ
< q

h
and η ≤ L(l)−L(h)

L(l)−L(h)+A(l)−A(h) ,

which rules out the case of pool L attracting full market share.

2. Fragmented Market Equilibrium. The right-hand side panel depicts the scenario q
h
< q

ℓ
< qt. Here,

liquidity providers with qi in the range (q
h
, qt] achieve higher positive profits in pool H, while those

with qi > qt obtain larger profits in pool L. The condition q
h
< q

ℓ
is equivalent to

q
h
≤ q

ℓ
⇔ C (h)

C (ℓ)
≤ (1− η)L (h)− ηA (h)

(1− η)L (ℓ)− ηA (ℓ)
, (C.13)

which is always true if η ≤ L(l)−L(h)
L(l)−L(h)+A(l)−A(h) as seen above.

πk

q

q
ℓ

πL

Cℓ

q
h

πH

Ch qt

(a) Single pool market (with fee ℓ)

πk

qq
ℓ

πL

Cℓ

q
h

πH

Ch

qt

(b) Fragmented market

It is crucial to note that configurations where q
ℓ
< qt < q

h
or q

h
< qt < q

ℓ
are not feasible, as they would

lead to a contradiction where profits are simultaneously positive in one pool and negative in the other at the

indifference point qt.
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Proposition 2

Proof. We first note that both qt and q
h
scale linearly with Γ: that is, there exists Qt > Qh > 0 such that

qt = ΓQt and q
h
= ΓQh where Qt and Qh are not functions of Γ. Next, we compute the partial derivative of

wℓ with respect to Γ

∂wℓ

∂Γ
=

Γ(Qh −Qt)e
Γ(Qh−Qt)

λ (ΓQhQt + λ(Qh +Qt))

λ(λ+ ΓQh)2
< 0, (C.14)

since Qh < Qt and all other terms are positive.

Proposition 3

Proof. The two-pool gains from trade for an LT with private value v (1 + δ) are

GainsFromTrade ({h, ℓ | δ}) = vδTH min

{
1,

1 + r

r
max

{
0, 1−

√
1 + h

1 + δ

}}
+

+ vδTL min

{
1,

1 + r

r
max

{
0, 1−

√
1 + ℓ

1 + δ

}}
. (C.15)

We set h = f such that the marginal LP entering the market is the same as in the single-fee pool; that is,

TH + TL = e−qhλ (qh + λ). Since min
{
1, 1+r

r max
{
0, 1−

√
1+f
1+δ

}}
decreases in f , it follows that:

GainsFromTrade ({h, ℓ | δ}) ≥ vδ (TH + TL)︸ ︷︷ ︸
=e−qhλ(qh+λ)

min

{
1,

1 + r

r
max

{
0, 1−

√
1 + h

1 + δ

}}
(C.16)

= GainsFromTrade ({h} | δ} , (C.17)

with strict inequality if qt < Q such that the low-fee pool attracts a positive mass of LPs. The inequality

holds for any δ, and therefore it remains true if we aggregate the gains from trade over the distribution LT

private values. We note that the expected gains from trade per unit of liquidity is

Emin

{
1,

1 + r

r
max

{
0, 1−

√
1 + h

1 + δ

}}
−

=
6
√
f + 1(r + 1) log(r + 1) + r

(
2
(
∆3 − 3∆−

√
f + 1

)
+

√
f + 1(f(r + 1)(r + 2) + r(r + 3))

)
6∆r

> 0,

(C.18)

which decreases in f since

∂Emin
{
1, 1+r

r max
{
0, 1−

√
1+h
1+δ

}}
∂f

= − (r + 1)((f + 1)r(r + 2)− 2 log(r + 1))

4∆
√
f + 1r

< 0. (C.19)
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D Just-in-time liquidity

Just-in-time (JIT) liquidity is a strategy that leverages the transparency of orders on the public blockchains.

If a liquidity provider observes an incoming large order that has not been processed by miners and it deems

uninformed in the public mempool, it can conveniently re-arrange transactions and propose a sequence of

actions to sandwich this trade as follows:

1. Add a large liquidity deposit at block position k, at the smallest tick around the current pool price.

2. Let the trade at block position k + 1 execute and receive liquidity fees.

3. Remove or burn any residual un-executed liquidity at block position k + 2.

The mint size is optimally very large (i.e., of the order of hundred of millions USD for liquid pairs), such

that the JIT liquidity provider effectively crowds out the existing liquidity supply and collects most fees for

the trade. That is, the strategy is made possible by pro-rata matching on decentralized exchanges because

with time priority, the JIT provider cannot queue-jump existing liquidity providers. Since the JIT liquidity

provider does not want to passively provide capital, it removes any residual deposit immediately after the

trade.

We identify JIT liquidity events by the following algorithm as in Wan and Adams (2022):

1. Search for mints and burns in the same block, liquidity pool, and initiated by the same wallet address.

The mint needs to occur exactly two block positions ahead of the burn (at positions k and k + 2).

2. Classify the mint and the burn as a JIT event if the transaction in between (at position k + 1) is a

trade in the same liquidity pool.

JIT events are rare in our sample, and account for less than 1% of the traded volume on Uniswap v3.

Further, more than half of them occur in a single pair - USDC-WETH, and in low-fee pools. The Uniswap

Labs provides further discussions on the aggregate impact of JIT liquidity provision here. Regarding the

economic effects, JIT liquidity reduces price impact for incoming trades, but dilutes existing liquidity providers

in the pro-rata markets, and can discourage liquidity supply in the long run.
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E Impermanent loss measure

We build our measure of impermanent loss in line with the definition of token reserves within a price range in

the Uniswap V3 white paper (Adams, Zinsmeister, Salem, Keefer, and Robinson, 2021) and Section 4.1 in

Heimbach, Schertenleib, and Wattenhofer (2022).

Consider a liquidity provider who supplies L units of liquidity into a pool trading a token x for a token y.

The chosen price range is [pℓ, pu] with pℓ < pu. Further, the current price of the pool is p0. We are interested

in computing the impermanent loss at a future point in time, when the price updates to p1.

From Adams, Zinsmeister, Salem, Keefer, and Robinson (2021), the actual amount of tokens x and y

(“real reserves”) deposited on a Uniswap v3 liquidity pool with a price range [pℓ, pu] to yield liquidity L are

functions of the current pool price p:

x (p) =


L×

(
1√
pℓ

− 1√
pu

)
if p ≤ pℓ

L×
(

1√
p − 1√

pu

)
if pℓ < p ≤ pu

0 if p > pu

and y (p) =


0 if p ≤ pℓ

L×
(√

p−√
pℓ
)

if pℓ < p ≤ pu

L×
(√

pu −√
pℓ
)

if p > pu.

(E.1)

From equation (E.1), the value of the liquidity position at t = 1 is therefore

Vposition = p1x (p1) + y (p1) =


Lp1 ×

(
1√
pℓ

− 1√
pu

)
if p1 ≤ pℓ

L×
(
2
√
p1 − p1√

pu
−√

pℓ

)
if pℓ < p1 ≤ pu

L×
(√

pu −√
pℓ
)

if p1 > pu.

(E.2)

Conversely, the value of a strategy where the liquidity provider holds the original token quantities and

marks them to market at the updated price is

Vhold = p1x (p0) + y (p0) =


Lp1 ×

(
1√
pℓ

− 1√
pu

)
if p0 ≤ pℓ

L×
(

p1+p0√
p0

− p1√
pu

−√
pℓ

)
if pℓ < p0 ≤ pu

L×
(√

pu −√
pℓ
)

if p0 > pu.

(E.3)

The impermanent loss is then defined as the excess return from holding the assets versus providing

liquidity on the decentralized exchange:

ImpermanentLoss =
Vhold − Vposition

Vhold
. (E.4)

Empirically, we follow Heimbach, Schertenleib, and Wattenhofer (2022) and compute impermanent loss

for “symmetric” positions around the current pool price, that is pℓ = p0α
−1 and pu = p0α, with α > 1. We

allow for a time lag of one hour between p0 and p1.
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1 Introduction

Dealers play a critical role in the U.S. corporate bond market. During times of stress

when demand for liquidity surges, dealers’ willingness to provide liquidity is essential to

the proper functioning of the market. The existing literature has studied bond market

liquidity through the lens of dealers’ ability to warehouse investor flows on their balance

sheets, emphasizing the roles played by funding costs and the regulatory reforms passed in

the aftermath of the 2008 financial crisis.1 However, what determines dealers’ willingness

to intermediate trades when the market becomes one-sided is still to be fully understood.

In this paper, we analyze dealers’ relationships with hedge funds that are natural

buyers of corporate bonds and study the effect that such relationships have on dealers’

willingness to provide liquidity in the corporate bond market during times of stress.

Dealers facilitate bond trading by serving either as market makers, temporarily absorbing

order imbalances and subsequently turning around their inventories, or as matchmakers,

searching for counterparties for their customers without committing their own capital for

intermediation. In both functions, whether dealers are willing to intermediate depends

on their capability to locate entities to take the other side of a trade. Such capability

is particularly valuable in a one-sided market when searching for counterparties becomes

challenging.

During the COVID liquidity crisis, the corporate bond market faced severe selling

pressure amid a dash for liquidity. For example, mutual funds experienced heavy out-

flows (Falato, Goldstein and Hortaçsu, 2021) and were forced to sell corporate bonds

to meet redemptions (Ma, Xiao and Zeng, 2022). With many bond mutual funds and

other investors selling bonds, the corporate bond market became one-sided and liquidity

deteriorated, as shown in Figure 1. Using redemption-driven sales of corporate bonds

by mutual funds at the security level, we show that dealers intermediating these bonds

during the crisis charged higher transaction costs.
1See for example,Adrian et al. (2017); Anderson and Stulz (2017); Bao, O’Hara and Zhou (2018);

Bessembinder et al. (2018); Choi, Huh and Seunghun Shin (2023); Dick-Nielsen and Rossi (2019); Duffie
(2022); Macchiavelli and Zhou (2022); Saar et al. (2023); Schultz (2017); Trebbi and Xiao (2019).
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Meanwhile, market dislocations caused by the COVID liquidity crisis provide prof-

itable trading opportunities for hedge funds that tend to maintain large long positions

in corporate bonds. Similar to (Shleifer and Vishny, 2011), we refer to such hedge funds

as natural buyers. As hedge funds are less regulated than dealer banks and generally

more willing to absorb risk, they are likely to step in and buy securities while many

other investors liquidate bonds to de-risk their portfolios. Indeed, we find that for the

investment-grade sector where market dislocations were more severe (Haddad, Moreira

and Muir, 2021), overall hedge funds positions in corporate bonds increased significantly

in March 2020.

Taking advantage of confidential SEC data on hedge funds’ corporate bond positions

and the identities of their prime brokers, we construct a measure of a dealer’s exposure to

the corporate bond holdings of their connected hedge funds. We then link it to dealer’s

corporate bond trading activities using dealer identities provided by a regulatory version

of FINRA’s TRACE data. While the liquidity deterioration is more pronounced in bonds

more exposed to mutual fund fire sales, such deterioration is attenuated for the corpo-

rate bonds traded by dealers that have prime brokerage relations with natural buyers of

corporate bonds.

Our results are robust to controlling for alternative channels, including repo funding

conditions, the tightness of leverage constraints, or any other time-varying dealer or

bond characteristic. These findings suggest that even without regulatory constraints

and prohibitive funding costs, dealers might still be reluctant to intermediate trades as

they perceive future challenges in locating buyers to turn around their inventories in a

one-sided market. We also address concerns that our results could be driven by dealer

sophistication or overall dealer-hedge fund connections — instead of relations with natural

corporate bond buyers specifically — by performing a set of placebo tests in addition to

controlling for dealer-day fixed effects. When we consider dealer relations with hedge

funds that are buyers of U.S. Treasuries or equities instead of corporate bonds, we do not

find effects on corporate bond liquidity provision.
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Our results highlight the importance for dealers to have relations with hedge fund

buyers during periods of stress. Dealers act as intermediaries, not ultimate investors.

As such, they are not keen to take significant directional bets on the market (Treynor,

1987; Levine, 2015). Indeed, as shown in several recent studies (Boyarchenko, Kovner and

Shachar, 2022; Kargar et al., 2021; O’Hara and Zhou, 2021), the corporate bond liquidity

crisis of March 2020 ended once a large enough buyer stepped in to absorb a sizable

amount of corporate bonds. Specifically, corporate bond liquidity broadly improved after

the Federal Reserve acted as the buyer of last resort by establishing the Secondary Market

Corporate Credit Facility, which had the goal of supporting liquidity via purchases of

corporate bonds in secondary markets.

After documenting that dealer relationships with hedge funds have an effect on cor-

porate bond liquidity provision, we explore factors that influence hedge funds’ propensity

to be the natural buyers of corporate bonds during times of stress. We consider sev-

eral hedge fund characteristics, including size, net flows, liquidity transformation, share

restrictions, profitability, and risk tolerance. We show that hedge funds’ size and risk

tolerance are the main factors that predict hedge funds’ ability to absorb more corporate

bonds during the COVID liquidity crisis, following a heavy sell-off of corporate bonds by

mutual funds and other investors. This seems to be an efficient outcome as risky assets

move from less to more risk tolerant investors in a downturn, and is in line with the

findings of Kruttli et al. (2021) on hedge fund liquidity provision in the U.S. Treasury

market. The fact that hedge funds’ size and risk tolerance are the primary drivers of

their higher corporate bond exposures is in line with our previous findings on dealers.

Namely, that dealer leverage and funding conditions did not significantly affect their liq-

uidity provision during the COVID liquidity crisis. In such a one-sided market, dealers

refrain from taking inventory risk. As such, internal risk controls may have been more

binding than the leverage ratio. Moreover, dealers’ funding conditions were generally

stable during the COVID liquidity crisis. Ultimately, what seemed to matter the most

is the risk-absorbing capacity of different players. While dealers intermediate between
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buyers and sellers, some hedge funds took directional bets on the market and increased

their exposure to corporate bonds in March 2020.

We contribute to the literature on market making in corporate bonds. The litera-

ture mainly focuses on the role of regulatory constraints (Bao, O’Hara and Zhou, 2018;

Bessembinder et al., 2018; Breckenfelder and Ivashina, 2021). Recent papers examine

dealers’ internal risk limits (Anderson, McArthur and Wang, 2023) and how insurers’

stable funding structures allowed them to provide liquidity during the COVID crisis

(O’Hara, Rapp and Zhou, 2021). We show that liquidity provision is facilitated by hav-

ing relations with hedge funds, especially during times of stress when most investors are

de-risking by selling securities.

We also contribute to the literature on hedge funds as liquidity providers. The liquidity

provision of hedge funds during crisis periods has mainly been studied in the context of

equity markets (Ben-David, Franzoni and Moussawi, 2012; Jylhä, Rinne and Suominen,

2014; Aragon, Martin and Shi, 2019; Çötelioğlu, Franzoni and Plazzi, 2021; Glossner

et al., 2020) due to the available long-equity holdings from the SEC Form 13F filings of

investment advisers. An exception is Kruttli et al. (2021), who study liquidity provision of

hedge funds in U.S. Treasury markets. In contrast, our paper focuses on how relationships

between dealers and hedge funds affect the liquidity provision of dealers, and consequently

transaction costs, in corporate bond markets.

Aragon and Strahan (2012) show that stocks traded by hedge funds with Lehman

Brothers as their prime broker became more illiquid in the aftermath of the Lehman

Brothers’ collapse. This finding is attributed to hedge funds being unable to access

collateral posted with Lehman Brothers during the bankruptcy proceedings. Our analysis

is testing a notably different mechanism. We measure transaction costs at the dealer-

security level and test if relationships with hedge funds allow dealers to provide more

liquidity and reduce transaction costs. Han, Kim and Nanda (2020) and Di Maggio,

Egan and Franzoni (2022) show that hedge funds and mutual funds can profit from

connections to central dealers because the latter provide lower trading costs. Our paper
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differs from Han, Kim and Nanda (2020); Di Maggio, Egan and Franzoni (2022), as we

find that dealers need hedge funds that are natural buyers of bonds to enable them to

provide better liquidity in a one-sided market.

The remainder of the paper is organized as follows. Section 2 sets out the data and

discusses the sample construction. In Section 3, we develop a measure to capture each

dealer’s exposure to hedge funds and test how it affects the transaction cost that dealers

charge to their customers. In Section 4, we study a number of hedge fund characteristics

and link them to their behavior around the crisis. Section 5 concludes the paper.

2 Data

Our study relies on data from several sources. To capture dealer liquidity provision, we

obtain from the Financial Industry Regulatory Authority (FINRA) the TRACE corporate

bond transaction data for the first quarter of 2020. TRACE data provide detailed in-

formation on secondary market transactions in corporate bonds, including bond CUSIP,

trade execution date and time, trade price and quantity, an indicator for inter-dealer

trades, an indicator for agency or principal trades, and an indicator for whether the re-

porting dealer buys or sells the bond. Unlike the publicly disseminated TRACE data,

our data include the identity of the dealer involved in each trade. Such information is

essential to our analysis as it allows us to estimate bond liquidity at the dealer-bond level,

and link it to each dealer’s relationships with hedge funds. We exclude from our sample

the following transactions: when issued, canceled, subsequently corrected, and reversed

trades.

We supplement TRACE bond transaction data with bond characteristic data, includ-

ing total amount outstanding, issuance and maturity dates, and credit rating, from the

Mergent Fixed Income Securities Database (FISD). We focus on bonds issued in U.S. dol-

lars by U.S. firms in the following three broad FISD industry groups: industrial, financial

and utility. Each bond has to be rated by Moody’s or S&P. If a bond is rated differently
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by the two rating agencies, we use the lower of the two. To avoid the potential impact

of special bond features on the liquidity estimation, we focus on fixed-coupon corporate

bonds with semiannual coupon payments, $1,000 par amount, and fixed maturity. We

also exclude from our sample the following bonds: convertible or putable bonds, private

placements, asset-backed issues, and issues that are part of a unit deal. After applying

these filters, we end up with a sample of 8,716 corporate bonds.

For each bond in our sample, we obtain data on its par amount held by each mutual

fund at the most recent quarter-end from Thomson Reuters’ eMAXX database, which

provides security-level holdings information of fixed-income mutual funds at a quarterly

frequency. We obtain daily data on mutual fund flows from Morningstar.

Our data on hedge funds are from the SEC Form PF and SEC Form ADV filings of

hedge fund advisers that file Form PF on a quarterly basis and report granular information

about their large hedge funds, called qualifying hedge funds in the form. We focus on

qualifying hedge funds because these funds report items that we require in our analysis,

such as hedge fund-dealer borrowing amounts and other variables such as corporate bond

exposures and returns at a monthly frequency.2 Our sample construction follows the

methodology described in Kruttli, Monin and Watugala (2022) and our data include

filings for Q4 2019 and Q1 2020. Hedge fund borrowing is reported in response to Question

47, which requires the fund to list all its “major” creditors, defined as creditors to whom

the hedge fund owes 5% or more of its NAV in a given quarter.3 We manually inspect

the “name” entries for Question 47 in the Form PF filings and match these to parent

institutions.

To control for funding liquidity at the dealer level, we use triparty repurchase agree-

ments (repos) transaction level data. Triparty repos are collateralized loans used to raise

cash against the pledge of collateral, which is held in custody at Bank of New York
2Advisers with at least $1.5 billion in regulatory assets under management across all of their hedge

funds file Form PF on a quarterly basis. Qualifying hedge funds are hedge funds with at least $500
million in net asset value.

3On average, 87.3% of all the borrowing by a hedge fund is from its major creditors, as shown in the
Online Appendix of Kruttli, Monin and Watugala (2022).
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Mellon. Information on triparty repos is provided daily to the Federal Reserve Bank of

New York (FRBNY). The triparty repo data include a transaction-level trade file, which

provides the loan amount and the interest rate for each repo transaction, as well as the

identity of both the borrower and the lender. In this study, we focus on repos backed

by corporate debt securities as collateral. For each dealer we compute the average pre-

crisis repo rate weighted by the loan amount, called Repo Ratepre, which controls for the

differential pre-crisis funding costs of each dealer. We also compute an exogenous fund-

ing shock to the dealer, called Repo Shock, which is the monthly change in corporate

bond repos outstanding between the dealer and prime money market funds (MMFs). We

first identify each prime MMF among the various repo lenders, and then compute their

level of outstanding corporate bond repo lending to each dealer. Finally, we compute

its monthly change at the dealer level. Since prime MMFs saw heavy redemptions for

reasons unrelated to their exposures to the repo market (Li et al., 2021), they had to

cut back on their repo lending. As a result, Repo Shock serves as an exogenous funding

shock to dealers.

Data on leverage is obtained in two ways. For dealers affiliated with bank holding

companies subject to the Supplementary Leverage Ratio (SLR), we obtain SLR data

from the annual Federal Reserve Stress Test results as of 2019Q4.4 These bank holding

companies are subject to a minimum SLR of 5%. For dealers that are not subject to the

SLR, we obtain their leverage ratio from the SEC FOCUS reports as of 2019Q4. These

dealers are subject to a minimum leverage ratio (net capital over debits) of 2%.

2.1 Summary Statistics

Summary statistics are displayed in Table 1. In the final sample, which corresponds

to the intersection of TRACE, Form PF, and eMAXX, there are 19 dealers and 8,716

CUSIPs. The average transaction cost is 41.39 basis points including riskless principal

trades (RPTs) and 39.96 excluding them. Following Harris (2015), we denote a trade
4See https://www.federalreserve.gov/publications/files/2020-dfast-results-20200625.pdf.
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as RPT if a dealer offsets it within one minute by another trade in the same bond and

with the same size but opposite trade direction. As such, RPTs do not require capital

commitments and, as a result, transaction costs on RPTs tend to be lower than those on

trades that require capital commitments. While at first this may seem not to apply to

our case, because the average cost including RPT is higher than the cost excluding them,

this is actually due to selection. Indeed, once we restrict the sample to observations with

non-missing Cost (No RPT), the average cost excluding RPTs, 39.96, is higher than that

including RPTs, 38.84. Figure 1 displays the dynamics of transaction costs including

RPTs in panel (a) and excluding RPTs in panel (b), separately for investment grade (IG)

and high yield (HY) bonds. While transaction costs are usually higher for HY than IG

bonds in normal times, they both spike up and reach similar heights during the COVID

liquidity crisis of March 2020. The spike is even larger when we exclude riskless principal

trades, since these trades do not increase dealers’ inventories, thus exposing them to less

risk.

The average outflow-weighted bond holdings by mutual funds during the crisis, MF

Shock, is $38.88 million, which points to significant selling pressure by corporate bond

mutual funds during the COVID liquidity crisis. This is in contrast to the average

outflow-weighted holdings in the pre-crisis period of -$5.55 million (not reported), which

suggests that prior to the crisis mutual funds were on average receiving net inflows and, as

a result, buying corporate bonds. Figure 2 shows the aggregate dynamics of mutual fund

selling shocks for IG and HY bonds, separately. While almost flat before the crisis, selling

pressure by mutual funds mounts during the COVID liquidity crisis, slightly more so for

HY than IG bonds, as one would expect. Since IG and HY dynamics for transaction costs

and selling shocks tend to be comparable, in our main analysis we estimate the average

effect across ratings, while controlling for time-varying bond characteristics. Nevertheless,

our results are unchanged if we separately estimate the effects for IG and HY bonds, as

shown in Appendix Table B.1.

HF Expo is the logarithm of the long exposures in corporate bonds of affiliated hedge
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funds. For each dealer and each month, we sum the long exposures in IG and HY

corporate bonds (separately) of hedge funds with which the dealer has a prime brokerage

relation. Such relation is obtained from Form PF, Question 47, where each hedge fund

lists its major prime broker lenders. HF Expo thus varies at the dealer-month-rating class

(IG vs HY) level. Repo Shock, the monthly change in corporate bond repos outstanding

coming from prime money funds, is 2.29 percent on average over the sample. However,

it varies from an average of 3 percent pre-crisis to -1 percent during the crisis. Next, the

average corporate repo rate pre-crisis is 1.75 percent, which is consistent with the federal

funds rate of about 1.6 percent during that period. Finally, Leverage Intensity, defined as

the minimum leverage ratio minus the actual one as of 2019Q4 divided by the minimum,

is on average -26.55, which suggests that the average trade in our sample is carried out

by a dealer with a 27 percent buffer above the minimum requirement, which is 5% for

SLR-constrained dealers and 2% for other dealers.

Table 1 also reports summary statistics for the hedge fund variables used in our

analysis. The average fund manages $4.36 billion and $1.86 billion in gross and net

assets, respectively, for a leverage ratio of 2.30. We use data on hedge funds’ corporate

bond exposures from Form PF Question 30, which requires hedge funds to report long

and short portfolio exposures at a monthly frequency for a range of asset classes. Hedge

funds’ corporate bond exposures include cash bond holdings at fair value and related bond

derivatives at notional value, but do not include exposures from credit default swaps. The

average gross notional exposure to corporate bonds is $383.8 million, of which $330.5

million is long exposure and $53.3 million is short exposure. Monthly aggregates for long

and short corporate bond exposures of hedge funds, broken out further by investment

grade and high yield classifications, are provided in Table 2.

The variable RiskLimith,t is based on the hedge fund’s value at risk (VaR). The VaR

shows for each fund and month the potential loss (as a percent of NAV) over a one-month

horizon with a probability of 5%. Like Kruttli et al. (2021), we construct the measure
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based on the monthly VaR observations.5 The measure proxies for a fund’s historical risk

limit and is the VaR averaged over a rolling 12-month window. The average RiskLimith,t

is 3.84%, which implies that the average fund expects to lose 3.84% of its NAV in a month

5% of the time.

The next three variables measure different dimensions of fund liquidity, including

portfolio liquidity (PortIlliqh,t), investor liquidity as measured by share restrictions

(ShareResh,t), and the funding liquidity measured as the weighted average maturity of a

fund’s borrowing (FinDurh,t). Form PF asks for the percentage of a hedge fund’s assets,

excluding cash, that can be liquidated within particular time horizons (within ≤1, 2-7, 8-

30, 31-90, 91-180, 181-365, and >365 days) using a given periods’ market conditions. We

compute the weighted average liquidation time to obtain the measure PortIlliqh,t. The

average PortIlliqh,t is 68.8 days in our sample and the median is 23.4 days. ShareResh,t

is a measure of the expected weighted average time it would take for a hedge fund’s

investors to withdraw the fund’s equity. This variable quantifies the restrictions faced by

a fund’s investors, such as lock-up, redemption frequencies, and redemption notice peri-

ods. The average ShareResh,t is 186.3 days. The weighted average time to maturity of a

fund’s borrowing is denoted FinDurh,t. On average, the financing duration is 67.0 days

for our sample of hedge funds with a median of 19 days. The variable LiqMismatchh,t,

constructed as in Aragon et al. (2021), summarizes these liquidity metrics and measures

the average liquidity of the hedge fund’s assets relative to its liabilities. Like Aragon

et al. (2021), the average fund in our sample has a negative liquidity mismatch. The

table further provides summary statistics for monthly returns, quarterly flows, and the

manager’s stake in the fund.
5Qualifying hedge funds are required to report the VaR of the fund at a monthly frequency if they

regularly calculate it. Kruttli et al. (2021) show that most funds report their VaR and provide a method,
which we adopt, to convert reported VaRs to a 5% significance level and monthly horizon.
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3 Dealer-Hedge Fund Relationships and Corporate

Bond Liquidity

Most corporate bonds trade in over-the-counter (OTC) markets and heavily rely on deal-

ers for intermediation. Dealers use their networks with customers and other dealers to

facilitate the matching between buyers and sellers, and the remaining order imbalances

remain on their balance sheets as inventories. Following the 2008 financial crisis, various

banking regulations increased dealer balance sheet costs and discouraged them from com-

mitting their own capital to market making. Under such regulation-induced constraints,

dealers’ ability to locate counterparties for their customers became particularly valuable.

In addition to balance sheet constraints, dealers do not want to take significant inventory

risk in turbulent times and especially in a one-sided market. Indeed, committing capital

to purchase bonds may lead to large losses if market prices move against the dealer be-

fore it can offload these bonds to other customers. Indeed, facing heavy selling pressure,

dealers usually charge higher transaction costs, as the dynamics of transaction costs and

mutual fund selling shocks displayed in Figures 1 and 2 suggest. For all these reasons,

dealers’ connections with natural buyers are especially important in a one-sided market.

We hypothesize that dealers’ relations with hedge funds play an important role in

their liquidity provision during the COVID liquidity crisis. First, the crisis introduced

opportunities for hedge funds to step in to profit from market dislocations. Second, hedge

funds tend to trade with their prime brokers that also provide them with financing. Such

relationship-based trading can help dealers address the unusually high selling pressures

in the bond markets. To test this hypothesis, we analyze how a dealer’s relation with

hedge funds affects its bond trading costs when facing large sell-offs.

We start by measuring liquidity provision at the dealer-bond level. For that purpose,

we first estimate the transaction cost for each bond trade as in Hendershott and Madhavan
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(2015):

Costi,j,r = ln

(
Pi,j,r

P B
i,j,r

)
· Signi,j,r. (1)

Pi,j,r refers to the price for trade r by dealer i in bond j. P B
i,j,r is the benchmark price

for trade r, which refers to the last trade price in the inter-dealer markets.6 Signi,j,r

represents the sign of the trade r, which takes the value of +1 for customer buy and -1

for customer sell. We then calculate a daily average transaction cost for dealer i in bond

j during day t (Costi,j,t). Finally, we divide the cost measure by 100 to facilitate our

interpretation of the magnitude.

To test whether dealers relations with natural bond buyers can attenuate the effect

of mutual funds selling pressures on the liquidity of a bond, we estimate the following

empirical model:

Costi,j,t = β1HFExpoi,j,t−1 + β2MFShockj + β3HFExpoi,j,t−1 × MFShockj

+ β4HFExpoi,j,t−1 × Crisis + β5MFShockj × Crisis

+ β6HFExpoi,j,t−1 × MFShockj × Crisis + γControls + µi,j,t + εi,j,t, (2)

where Costi,j,t is the transaction cost charged by dealer i on bond j at day t, as defined

in Equation (1). HFExpoi,j,t−1 is the logarithm of the long exposures to IG and HY

corporate bonds of hedge funds affiliated to dealer i as of the previous month. When

dealer i trades an IG (HY) bond j, HFExpoi,j,t−1 captures the exposure of dealer i to

affiliated hedge funds’ long positions in IG (HY) bonds. MFShockj is a proxy for bond

sales by mutual funds during the crisis. It equals the outflow-weighted holdings of bond j

by corporate bond mutual funds during the crisis period (March 5 to March 20). Crisis

is an indicator variable equal to one between March 5 and March 20, 2020, at the height

of the dislocation in capital markets. Control variables include Log(TTM), Repo Shock,
6Schultz (2001), Bessembinder, Maxwell and Venkataraman (2006), Goldstein, Hotchkiss and Sirri

(2006), and Edwards, Harris and Piwowar (2007) use alternative benchmark prices but broadly similar
approaches to estimate transaction costs.
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and Repo Ratepre. Log(TTM) is the logarithm of the time to maturity of each bond.

Repo Shock is the monthly change in dealer-level corporate bond repo outstanding with

prime money market funds. It controls for exogenous variation in access to repo markets.

Repo Ratepre is the average pre-crisis dealer-level corporate bond repo rate, which is zero

pre-crisis and is switched on during the crisis. It controls for predetermined differences in

repo funding costs. Finally, we include a set of fixed effects. Standard errors are two-way

clustered at the bond and dealer level.

The results in Table 3 support our hypothesis. Consistent with the literature on fire-

sales and liquidity (Ambrose, Cai and Helwege, 2008; Ellul, Jotikasthira and Lundblad,

2011; Bao, O’Hara and Zhou, 2018), the coefficient of Crisis × MFShock is positive and

highly significant, suggesting that dealer liquidity provision deteriorates significantly for

the bonds heavily sold during the crisis (column 1). More importantly, the coefficient

of the triple interaction term, Crisis × HFExpo × MFShock, is negative and highly

significant. This finding suggests that a dealer with more hedge fund connections is able

to charge a relatively lower transaction cost in bonds facing heavy mutual fund sell-offs.

To control for the potential time-varying impact of bond characteristics, we replace bond

fixed effects and day fixed effects with bond-day fixed effects. Column (2) shows that,

even after controlling for bond-day fixed effects, the coefficient of Crisis × HFExpo ×

MFShock remains negative and highly significant. This finding suggests that among

dealers that trade the same bond on the same day, those with stronger relations with

hedge funds charge lower transaction costs for bonds facing higher selling pressure during

the crisis.

A key assumption underlying our triple-difference empirical design is the parallel

trend assumption, which requires that the difference in liquidity costs charged by dealers

with different relations with hedge funds (first difference) across bonds with different

exposure to mutual fund sell-offs (second difference) do not already exhibit different

patterns prior to the crisis period. To validate the parallel trend assumption, we construct

three indicator variables for three pre-crisis sub-periods, each 2 weeks long. Specifically,
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Crisis−2 equals one between February 6 and 19; Crisis−3 equals one between January 23

and February 5; and Crisis−4 equals one between January 9 and 22. Following Borusyak

and Jaravel (2017), the first and last two-week intervals of the pre-crisis period are left in

the omitted group. We then interact HFExpo × MFShock with each of the three pre-

crisis sub-period indicators and include them as regressors. Column (3) shows that the

parallel trends assumption seems to hold in the data. All the pre-crisis interaction terms

exhibit little economic and statistical significance. The coefficient of Crisis×HFExpo×

MFShock is only slightly less than that in column (1) in terms of magnitude and remains

negative and highly significant. Controlling for bond-day fixed effects in column (4) does

not materially affect the results. We also repeat our analysis by focusing on dealers’

liquidity costs excluding RPT trades, which do not require capital commitments and are

thus executed at a lower cost. Displayed in columns (5) to (8), the results are qualitatively

the same.

There are several confounding factors that may drive our results. First, dealers finance

a significant portion of their inventories in the repo markets (Macchiavelli and Zhou,

2022). As a result, both access and cost of repo funding for corporate bond collateral

may affect our results. To control for differential access to repo funding, we measure the

monthly change in the quantity of repo funding backed by corporate bonds coming from

prime MMFs, called Repo Shock. This represents an exogenous shock to the dealers,

because in March 2020 prime MMFs faced a run that was unrelated to dealers’ exposures

to corporate bonds (Li et al., 2021). Columns (1) and (2) of Table 4 shows that controlling

for dealers’ access to repo funding does not materially affect our results. To further

account for the differential cost of repo funding, we also control for the pre-crisis repo

rate paid by each dealer to finance corporate bond collateral. Columns (5) and (6) again

show that our results hold.

Second, dealers face balance sheet constraints that may hinder their ability to make

markets. In particular, the leverage ratio may constrain dealers’ willingness to hold in-

ventories on the balance sheet. Alternatively, dealers facing a more binding leverage ratio
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may charge higher transaction costs to intermediate a trade. To control for the dealer-

level leverage constraint, we construct a measure of how tight the leverage constraint

is relative to the minimum requirement. Leverage Intensitypre equals 5 minus the the

2019Q4 SLR divided by 5 for dealers subject to the SLR, and 2 minus the 2019Q4 lever-

age ratio divided by 2 for dealers that are not subject to the SLR. Leverage Intensitypre

is negative for dealers with a leverage ratio above the minimum and converges to zero as

dealers get closer to the minimum leverage ratio requirement. Columns (3), (4), (7), and

(8) of Table 4 show that leverage constraints do not appear to affect liquidity provision

around the COVID liquidity crisis. The coefficient of Leverage Intensitypre is not signifi-

cant. Importantly, the main coefficient of interest, Crisis×HFExpo×MFShock, is still

negative and statistically significant. The effect is also economically significant. While a

one standard deviation selling shock (23.16) increases transaction costs by 10 bps if the

dealer has connections with natural buyers in the lowest decile (HFExpo = 19.05), the

same shock has a 6 bps lower effect if the dealer has connections with natural buyers in

the top decile (HFExpo = 22.12). As a result, moving a dealer from the bottom to the

top decile of natural buyer connections reduces the liquidity decline due to a one standard

deviation selling shock by 60%.7 In sum, having relations with natural corporate bond

buyers reduces the liquidity costs associated with making markets in heavily sold bonds

during the crisis.

Even though our results are robust to controlling for dealer-level repo funding condi-

tions as well as leverage constraints, the reader may be concerned that our findings could

still be explained by some unobservable time-varying dealer characteristics. Given the

rich dimensionality of the panel, we can add dealer-day fixed effects and still identify the

triple interaction of interest. In Table 5 we show that adding dealer-day fixed effects to

our model does not affect our results.
7Using the estimated coefficients of Table 4, column (7), a one standard deviation selling shock

(23.16) increases transaction costs by 2.014 × 23.16 − 0.083 × 23.16 × 19.05 = 10 for a dealer with
a natural buyer connection in the bottom decile (19.05). The same mutual fund selling shock has a
−0.083×23.16× (22.12−19.05) = −5.90 differential effect for a dealer with natural buyer connections in
the top decile (22.12). These magnitudes are sizable if compared to the average and median transaction
costs of 41 and 18 bps in our sample, respectively.
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Finally, one may argue that overall dealer sophistication in prime brokerage activi-

ties, rather than specifically its connections to corporate bond hedge funds, may drive

our results. If that were the case, we would observe the same results once we substi-

tute the corporate bond exposures of affiliated hedge funds with the equity or Treasury

exposures of affiliated hedge funds. To address this concern, we run some placebo tests

where we use dealer-level equity or Treasury exposures of affiliated hedge funds instead

of corporate bond exposures. Table 6 shows that overall dealer sophistication in prime

brokerage activities is an unlikely explanation for our findings. When a dealer’s hedge

fund connections are captured using either equity or Treasury positions, the coefficient

of the triple interaction term no long exhibits any significance. On the other hand, what

seems to specifically matter is dealer connections with natural corporate bond buyers.

Overall, our results suggest that in times of market stress and heavy selling by mutual

funds, dealers step back from providing liquidity because it becomes challenging to find

willing buyers. Afraid of finding themselves on the wrong side of the trade as asset prices

are falling, dealers reduce their market making activities instead of buying larger and

larger quantities of depreciating bonds from mutual funds. Corroborating this narrative

is the evidence that dealers that are connected with natural bond buyers provide more

liquidity. With access to both sellers and buyers, a dealer is more willing to make markets

and intermediate trades.

In the tumultuous times of March 2020, funding conditions remained quite stable,

especially if compared to the 2008 financial crisis in which repo markets for corporate

collateral were severely stressed and some dealers lost more repo finding than others

(Gorton and Metrick, 2012; Copeland, Martin and Walker, 2014). The relative stability

of the repo markets in March 2020 is possibly the reason why repo market conditions

seem not to significantly affect liquidity provision during the COVID liquidity crisis. This

result is not necessarily in contrast with the fact that repo funding conditions tend to

affect liquidity provision over longer time periods (Macchiavelli and Zhou, 2022). Finally,

we also find that the proximity to the leverage constraint did not play a significant role
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in March 2020. We argue that in a one-sided market, dealers step back from making

markets because they are less likely to find buyers and do not want to buy large quanti-

ties of bonds and be on the wrong side of a trade while asset prices are falling. In this

scenario, the leverage ratio may not play a primary role. This, however, does not mean

that the leverage ratio has no impact on market making. On the contrary, it is likely

that in normal times the leverage ratio may be a primary factor affecting the cost of car-

rying inventories. Indeed, Breckenfelder and Ivashina (2021) find evidence that liquidity

provision is negatively affected by leverage constraints.

4 Hedge Fund Characteristics and Corporate Bond

Liquidity Provision

We have shown that dealer relations with hedge funds that invest in corporate bonds

matter for corporate bond liquidity during the COVID liquidity crisis. In the midst

of selling pressures from mutual funds, dealers are more willing to step in and provide

liquidity if they can turn around and sell those bonds to connected buyers. We now study

what factors matter for the ability of hedge funds to behave as bond buyers in times of

stress. Specifically, we explore in a monthly panel the hedge fund characteristics that

predict increases in corporate bond exposures during the COVID liquidity crisis.

We restrict our sample to hedge funds that have exposures to corporate bonds. The

average hedge fund in our sample has $4.36 billion in gross assets and a VaR of 4.35%,

which means that there is a 5% chance that the fund may lose 4.35% of its value over the

next month. The average fund has a fairly illiquid portfolio, being able to liquidate its

assets at little to no cost in 69 days. On the other hand, its average equity investors can

withdraw their stakes in 186 days and the average maturity of its debts is 67 days. As a

result, the assets of the representative fund are more liquid than its liabilities, allowing it

to potentially hold on to illiquid assets for quite some time before it may be forced to sell

them to meet redemptions. Consistent with Kruttli et al. (2021), funds with a higher risk
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tolerance tend to have managers with more skin in the game (higher manager stake) and

display greater return volatility. On the other hand, funds with longer share restrictions

and financing duration tend to have lower risk tolerance.

The literature on hedge fund liquidity provision has mainly focused on equity markets

and the role of share restrictions and finds mixed results (e.g., Ben-David, Franzoni and

Moussawi, 2012; Hombert and Thesmar, 2014; Aragon, Martin and Shi, 2019). Recent

work highlights the importance of hedge funds’ internal risk limits in the U.S. Treasury

market (Kruttli et al., 2021). Corporate bond markets differ notably from equity markets

as they trade OTC instead of on an exchange. Further, the corporate bond market is much

less liquid than the U.S. Treasury market. Therefore, which hedge fund characteristics

drive the liquidity provision might differ for corporate bond trading hedge funds. On

the one hand, the lower liquidity of corporate bonds might make share restrictions and

liquidity mismatches more important for corporate bond trading than equity trading

hedge funds due to the document inverse relationship between a fund’s share restrictions

and the liquidity of the assets that it trades (Aragon, 2007; Agarwal, Daniel and Naik,

2009; Teo, 2011; Sadka, 2010). On the other hand, the importance of fund internal risk

limits as a predictor of hedge fund liquidity provision in the U.S. Treasury market (Kruttli

et al., 2021) might also hold for other fixed income markets.

To test these hypotheses, we run the following panel regression model:

∆ log CorpBondLNEh,t = γ1Zh,t−1 + γ2Zh,t−1 × Crisis + µh + θt + εh,t (3)

where ∆ log CorpBondLNEh,t is the log change of the long corporate bond exposure

of hedge fund h at month t, and Crisis is 1 in March 2020 and 0 otherwise. The

vector Z includes RiskLimit, liquidity mismatch (LiqMismatch), the log of net asset

values (LogNAV ), net returns (NetRetM), net flows (NetF lows), and manager stake

(MgrStake). To estimate how each of these characteristics contributes to corporate

bond exposures during the COVID liquidity crisis, we add their interactions with Crisis.
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Finally, µh and θt denote fund and time fixed effects, respectively. Standard errors are

clustered at the fund level. The data are monthly from October 2019 to March 2020 and

the independent variables, except for the indicator variable Crisis, are standardized.

The results are shown in Table 7. Panel A contains the main results and shows that,

relative to other funds, hedge funds with more risk tolerance significantly increased their

corporate bond exposures in March 2020. The economic magnitude of these estimates is

substantial, with a one standard deviation move in the RiskLimit predicting a roughly

10% increase in the corporate bond exposure of a hedge fund. Similarly, larger hedge

funds bought corporate bonds during the market turmoil. A higher degree of liquidity

transformation indicates that the liabilities of a hedge fund can be redeemed sooner

relative to the time it takes for the fund to liquidate its assets at fair value. Interestingly,

the degree of liquidity transformation of a fund seems not to be associated with bond

exposures.

Panel B of Table 7 contains some robustness tests. In the first two columns, we

incorporate funds that do not calculate or report VaR, and thus do not have a de-

fined RiskLimit according to our methodology. In the last two columns, we decompose

LiqMismatch into its components PortIlliq, ShareRes, and FinDur. Indeed, it is pos-

sible that while liquidity transformation is not associated with bond exposures, some of

its components may be. However, none of these components is significant. In particular,

funds with longer-term liabilities, in the form of greater share restrictions or longer debt

maturity, did not significantly increase bond exposures during the COVID liquidity crisis.

In other words, within the set of hedge funds investing in corporate bonds, the stability

of their funding structure does not predict bond exposures in times of stress. This result,

however, does not negate that hedge funds with less liquid investment strategies (dis-

tressed debt instead of Treasury cash-futures basis trades) employ longer-term funding

structures, such as longer share restrictions or longer-term repo.

Importantly, across the different specifications, the RiskLimit coefficient estimate

remains positive and statistically significant. Hedge funds with greater risk capacity
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are willing to absorb more corporate bonds during a market sell-off and hold on to them

until market confidence is restored. In late March 2020, the Federal Reserve intervened to

avoid further market dislocations (O’Hara and Zhou, 2021) and provided ample funding

to dealers. As a result, dealers could support the funding needs of their hedge fund

clients. Had there been significant runs on dealers (as during the 2008 financial crisis),

we may have seen a deterioration in hedge funds’ financing conditions, which in turn may

have led to a further bond selloff.

5 Conclusion

The secondary market for corporate bonds relies on dealer intermediation. With in-

frequent trading, dealers step in between sellers and buyers to provide a timely trade

execution and charge a bid-ask spread for the incurred risk. During periods of market

turmoil, many investors rush to sell corporate bonds. Dealers face an increasing risk that

by the time they find a buyer, the bond they just purchased has already decreased in

value. In such a one-side market, dealers’ relations with hedge funds become very valu-

able. Indeed, hedge funds were net buyers of corporate bonds during the 2020 liquidity

crisis. Dealers with stronger prime broker relations with hedge funds were better able to

offload their positions and reduce their inventory risk. As a result, these dealers could

provide more secondary market liquidity.

Consistent with this explanation we find that, for the bonds more heavily sold by mu-

tual funds, dealers with stronger hedge fund connections charged smaller bid-ask spreads.

Our results are not driven by other factors that could affect dealers’ liquidity provision,

such as leverage constraints and repo funding availability and costs. Hedge funds that

were better positioned to absorb risk proved to be valuable to dealers, particularly when

dealers were facing a one-side market with mutual funds and other institutional investors

trying to sell bonds at the same time.
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Figure 1: Transaction costs over time. This figure shows the evolution of average transaction
costs over time for investment grade bonds in solid blue and high yield bonds in dashed red. Panel (a)
shows transactions costs including riskless principal trades (RPT), while panel (b) shows transaction
costs excluding riskless principal trades. Sources: TRACE, authors’ calculations.

(a) Transaction Cost (including RPT)

(b) Transaction Cost (excluding RPT)
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Figure 2: Mutual fund selling shocks over time. This figure shows the evolution of average
holdings-weighted outflows from mutual funds. Sources: eMAXX, Morningstar, authors’ calculations.
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Table 1: Summary Statistics

Cost is the average transaction cost (relative cost of customer trades to inter-dealer trades) at the
dealer-bond-day level. Cost (NoRPT) is the average transaction cost (relative cost of customer trades
to inter-dealer trades) excluding riskless principal trades at the dealer-bond-day level. MF Shock is a
CUSIP-level proxy for bond sales by mutual funds during the crisis. It equals the outflow-weighted
holdings of a certain CUSIP by corporate bond mutual funds. HF Expo is the logarithm of the long
exposures in corporate bonds of affiliated hedge funds at the dealer-month level, as of the previous month.
Log(TTM) is the logarithm of the time to maturity of each bond. Repo Shock is the monthly change
in dealer-level corporate repo outstanding coming from prime MMFs. Repo Ratepre is the average pre-
crisis dealer-level corporate repo rate. Leverage Intensitypre is equal to 100 times the minimum leverage
ratio minus the 2019:Q4 leverage ratio divided by the minimum. NAV is net asset value in $ million.
CorpBondGNE is gross (long plus short) exposures to corporate bonds in $ million. CorpBondLNE and
CorpBondSNE are long and short exposures to corporate bonds in$ million, respectively. VaR is value at
risk with a 5% probability and a horizon of 1 month. RiskLimit is the 12-month rolling average of VaR.
PortIlliq measures the average number of days it would take for the assets to be liquidated at no fire
sale discount. ShareRes is the average number of days it would take for investors to withdraw all their
funds. FinDur is the weighted average maturity of the fund’s borrowings. LiqMismatch is the liqudity
of assets relative to the liquidity of liabilities. NetRetM is the monthly return and NetFlows measures
investor flows. Finally, MgrStake is the percent of NAV owned by the managers. See Appendix A for
more details on the variables.

Panel A: Bond-Dealer-Day Level
Variables count mean st.dev. p(10) p(50) p(90)
Cost 230,555 41.39 54.97 1.10 18.38 117.75

Cost (No RPT) 152,441 39.96 57.03 1.89 17.42 108.57

MF Shock 230,555 38.88 23.16 3.65 39.54 67.86

HF Expo 230,555 20.85 1.11 19.05 20.93 22.12

Log(TTM) 230,555 7.57 1.07 6.18 7.61 9.12

Repo Shock 194,531 2.29 33.36 -26.88 0 15.80

Repo Ratepre 201,959 1.75 0.21 1.61 1.77 1.95

Leverage Intensitypre 230,555 -26.55 9.98 -41.40 -27.20 -12.50
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Summary Statistics (continued)

Panel B: Fund-Month Level
Variables count mean st.dev. p(10) p(50) p(90)
NAVh,t (m US$) 1,419 1,863.68 2,902.84 220.21 952.91 3,964.29

GAVh,t (m US$) 1,419 4,335.31 9,690.56 323.69 1,391.36 8,140.68

CorpBondGNEh,t (m US$) 4,189 383.82 752.96 1.51 111.74 1,013.33

CorpBondLNEh,t (m US$) 4,189 330.47 655.35 0.42 95.51 853.76

CorpBondSNEh,t (m US$) 4,189 53.33 178.85 0.00 0.00 103.33

V aRh,t (%) 1,745 4.35 4.75 0.83 3.07 8.43

RiskLimith,t (%) 1,568 3.84 4.33 0.94 2.71 6.73

PortIlliqh,t (days) 1,419 68.77 96.10 1.78 23.41 213.27

ShareResh,t (days) 1,419 186.31 136.55 0.50 185.50 366.00

FinDurh,t (days) 1,147 66.99 106.48 0.50 19.00 273.00

LiqMismatchh,t (days) 1,140 -92.21 94.58 -241.64 -72.02 1.99

NetRetMh,t (%) 3,829 -1.33 5.66 -8.74 0.20 2.55

NetF lowsh,t (%) 1,353 -0.76 17.91 -14.67 -0.86 10.75

MgrStakeh,t (%) 1,352 12.88 23.79 0.00 3.00 37.00
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Table 2: Hedge fund corporate bond exposures by month

This table reports the corporate bond exposure of hedge funds in our sample. Reported are the long and
short notional exposure for investment grade and high yield bonds from October 2019 to March 2020.

Oct-19 Nov-19 Dec-19 Jan-20 Feb-20 Mar-20
CorpBondIG LNEh,t (m US$) 86,730 85,300 86,268 85,983 87,309 97,029

CorpBondIG SNEh,t (m US$) 20,703 19,744 20,077 21,164 21,555 15,222

CorpBondHY LNEh,t (m US$) 157,499 155,718 159,399 162,708 160,300 137,940

CorpBondHY SNEh,t (m US$) 27,554 25,962 25,834 25,728 25,397 16,752
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Table 3: Bond Liquidity, Mutual Fund Sales, and Hedge Fund Relations.

The sample goes from January 02, 2020 to March 20, 2020. Cost is the average transaction cost
(relative cost of customer trades to inter-dealer trades) at the dealer-bond-day level. Cost (NoRPT) is
the average transaction cost (relative cost of customer trades to inter-dealer trades) excluding riskless
principal trades at the dealer-bond-day level. Crisis equals one between March 5 and March 20. Crisis−2
equals one between February 6 and 19; Crisis−3 equals one between January 23 and February 5; and
Crisis−4 equals one between January 9 and 22. Following Borusyak and Jaravel (2017), the first and
last two-week intervals of the pre-crisis period are left in the omitted group. HF Expo is the logarithm
of the long exposures in corporate bonds of affiliated hedge funds as of the previous month. MF Shock
is a CUSIP-level proxy for bond sales by mutual funds during the crisis. It equals the outflow-weighted
holdings of a certain CUSIP by corporate bond mutual funds during the crisis period. Log(TTM) is the
logarithm of the time to maturity of each bond. Standard errors in parentheses are two-way clustered
at the bond and dealer level; ***,**,* indicate statistical significance at 1%, 5%, and 10%, respectively.

(1) (2) (3) (4) (5) (6) (7) (8)

Dependent variable: Cost Cost Cost (No RPT) Cost (No RPT)
HF Expo×Crisis -0.556 0.045 -1.486 -0.329 0.893 4.874∗∗ -0.040 4.632∗∗

(2.276) (2.357) (2.036) (2.345) (2.498) (1.899) (2.304) (1.898)

MF Shock×Crisis 1.779∗∗ 1.656∗∗ 1.221∗∗ 1.344∗∗

(0.662) (0.611) (0.568) (0.562)

HF Expo×MF Shock -0.019 -0.007 -0.008 0.019
×Crisis−4 (0.011) (0.017) (0.014) (0.022)

HF Expo×MF Shock -0.002 -0.007 -0.010 -0.023
×Crisis−3 (0.009) (0.018) (0.013) (0.023)

HF Expo×MF Shock 0.014 0.014 0.004 -0.002
×Crisis−2 (0.012) (0.018) (0.012) (0.018)

HF Expo×MF Shock -0.073∗∗ -0.065∗∗∗ -0.069∗∗ -0.061∗∗ -0.059∗ -0.081∗∗ -0.064∗∗ -0.089∗∗

×Crisis (0.032) (0.022) (0.029) (0.026) (0.028) (0.033) (0.028) (0.037)

Log(TTM) 33.369∗∗∗ 31.986∗∗∗ 59.140∗∗∗ 60.724∗∗∗

(7.526) (7.763) (7.585) (7.878)
N 229,856 161,633 229,856 161,633 151,629 93,197 151,629 93,197
R2 0.335 0.582 0.335 0.582 0.426 0.671 0.427 0.671
Dealer FE Yes Yes Yes Yes Yes Yes Yes Yes
Day FE Yes No Yes No Yes No Yes No
Bond FE Yes No Yes No Yes No Yes No
Bond-Day FE No Yes No Yes No Yes No Yes
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Table 4: Controlling for Alternative Channels.

The sample goes from January 02, 2020 to March 20, 2020. Cost is the average transaction cost (relative
cost of customer trades to inter-dealer trades) at the dealer-bond-day level. Crisis equals one between
March 5 and March 20. HF Expo is the logarithm of the long exposures in corporate bonds of affiliated
hedge funds as of the previous month. MF Shock is a CUSIP-level proxy for bond sales by mutual
funds during the crisis. It equals the outflow-weighted holdings of a certain CUSIP by corporate bond
mutual funds during the crisis period. Log(TTM) is the logarithm of the time to maturity of each bond.
Repo Shock is the monthly change in dealer-level corporate repo outstanding coming from prime money
market funds. It controls for differential access to repo markets. Repo Ratepre is the average pre-crisis
dealer-level corporate repo rate, which is switched on during the crisis. It controls for predetermined
differences in repo funding costs. Leverage Intensitypre is equal to 100 times the minimum leverage
ratio minus the 2019:Q4 leverage ratio divided by the minimum, which is switched on during the crisis.
Standard errors in parentheses are two-way clustered at the bond and dealer level; ***,**,* indicate
statistical significance at 1%, 5%, and 10%, respectively.

(1) (2) (3) (4) (5) (6) (7) (8)

Dependent variable: Cost Cost Cost Cost
HF Expo×Crisis -1.170 -0.625 2.122 3.867 -2.216 -0.445 0.806 3.806

(2.475) (2.324) (3.478) (3.659) (1.965) (2.118) (3.602) (3.674)

MF Shock×Crisis 2.031∗∗ 2.291∗∗∗ 1.815∗∗ 2.014∗∗∗

(0.761) (0.589) (0.651) (0.570)

HF Expo×MF Shock -0.084∗∗ -0.066∗∗ -0.097∗∗∗ -0.062∗∗ -0.073∗∗ -0.065∗∗ -0.083∗∗∗ -0.062∗∗

×Crisis (0.037) (0.027) (0.029) (0.026) (0.031) (0.025) (0.028) (0.023)

Log(TTM) 29.454∗∗∗ 29.194∗∗∗ 29.240∗∗∗ 29.187∗∗∗

(6.489) (7.064) (6.573) (6.920)

Repo Shock -0.005 0.002 -0.005 0.003
(0.013) (0.011) (0.014) (0.011)

Repo Ratepre 1.435 -3.335 8.444 2.820
(19.548) (10.783) (14.640) (7.608)

Leverage Intensitypre -0.447 -0.544 -0.443 -0.538
(0.639) (0.445) (0.554) (0.405)

N 193,803 126,532 193,803 126,532 202,560 134,757 202,560 134,757
R2 0.336 0.582 0.336 0.583 0.332 0.578 0.333 0.579
Dealer FE Yes Yes Yes Yes Yes Yes Yes Yes
Day FE Yes No Yes No Yes No Yes No
Bond FE Yes No Yes No Yes No Yes No
Bond-Day FE No Yes No Yes No Yes No Yes
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Table 5: Bond Liquidity and Hedge Fund Relations: Within Bond-Day and Dealer-Day.

The sample goes from January 02, 2020 to March 20, 2020. Cost is the average transaction cost (relative
cost of customer trades to inter-dealer trades) at the dealer-bond-day level. Crisis equals one between
March 5 and March 20. HF Expo is the logarithm of the long exposures in corporate bonds of affiliated
hedge funds as of the previous month. MF Shock is a CUSIP-level proxy for bond sales by mutual funds
during the crisis. It equals the outflow-weighted holdings of a certain CUSIP by corporate bond mutual
funds during the crisis period. HY refers to high yield bonds and FIN to bonds issued by financial
companies. Standard errors in parentheses are two-way clustered at the bond and dealer level; ***,**,*
indicate statistical significance at 1%, 5%, and 10%, respectively.

(1) (2) (3) (4)

Dependent variable: Cost Cost
HF Expo×Crisis -0.097 1.264

(2.351) (2.506)

HF Expo×MF Shock -0.063∗∗ -0.055∗ -0.086∗∗∗ -0.081∗∗∗

×Crisis (0.024) (0.030) (0.022) (0.026)

N 161,606 146,066 161,314 145,666
R2 0.597 0.692 0.611 0.700
Dealer-Day FE Yes Yes No No
Bond-Day FE Yes Yes Yes Yes
Dealer-Day-HY-FIN FE No No Yes Yes
Dealer-Bond FE No Yes No Yes
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Table 6: Placebo Test: Equity and Treasury Long Positions.

The sample goes from January 02, 2020 to March 20, 2020. Cost is the average transaction cost (relative
cost of customer trades to inter-dealer trades) at the dealer-bond-day level. Crisis equals one between
March 5 and March 20. HF Eqty (Tsy) L is the logarithm of the long exposures to equities (Treasuries)
of affiliated hedge funds as of the previous month. MF Shock is a CUSIP-level proxy for bond sales by
mutual funds during the crisis. It equals the outflow-weighted holdings of a certain CUSIP by corporate
bond mutual funds during the crisis period. Log(TTM), Repo Shock, and Repo Ratepre are defined in
Table 4. Standard errors in parentheses are two-way clustered at the bond and dealer level; ***,**,*
indicate statistical significance at 1%, 5%, and 10%, respectively.

(1) (2) (3) (4) (5) (6)

Dependent variable: Cost Cost
HF Eqty L×Crisis 2.261 3.868 2.368

(3.207) (3.238) (3.758)

HF Tsy L×Crisis -1.577 6.256 5.457
(5.932) (8.065) (7.962)

MF Shock×Crisis 0.783 0.796 0.394 1.223 1.882∗ 1.510
(0.624) (1.159) (0.715) (0.925) (1.039) (0.975)

HF Eqty L×MF Shock -0.022 -0.021 -0.005
×Crisis (0.025) (0.047) (0.029)

HF Tsy L×MF Shock -0.041 -0.066 -0.051
×Crisis (0.038) (0.043) (0.040)

Log(TTM) 33.968∗∗∗ 30.619∗∗∗ 30.511∗∗∗ 33.646∗∗∗ 29.481∗∗∗ 29.800∗∗∗

(8.009) (7.505) (7.251) (7.297) (7.183) (7.139)

Repo Shock -0.012 -0.031∗

(0.018) (0.016)

Repo Ratepre 9.487 8.223
(15.821) (16.804)

Leverage Intensitypre -0.697 -0.736 -0.747 -0.778
(0.536) (0.459) (0.602) (0.532)

N 229,856 193,803 202,560 229,856 193,803 202,560
R2 0.334 0.336 0.333 0.334 0.337 0.333
Dealer FE Yes Yes Yes Yes Yes Yes
Day FE Yes Yes Yes Yes Yes Yes
Bond FE Yes Yes Yes Yes Yes Yes
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Table 7: Hedge fund characteristics and corporate bond trading

This table presents results of the panel regression model given in Equation (3). The dependent variable
is ∆ log CorpBondLNEh,t (in %). The data are monthly from October 2019 to March 2020. All explana-
tory variables (excluding Crisis) are lagged. The specifications include fund and/or time fixed effects
where indicated. The standard errors are clustered at the fund level. The independent variables, with
the exception of the indicator variable Crisis, are standardized. ***,**,* indicate statistical significance
at 1%, 5%, and 10%, respectively.

Panel A: Main
(1) (2) (3) (4)

Dependent variable: ∆ logCorpBondLNE
RiskLimit×Crisis 10.080∗∗∗ 10.082∗∗∗ 14.425∗∗∗ 14.431∗∗∗

(3.853) (3.848) (4.296) (4.299)

LiqMismatch×Crisis 0.709 0.716 -0.693 -0.679
(4.981) (4.984) (4.962) (4.963)

LogNAV×Crisis 11.155∗∗ 11.181∗∗

(4.713) (4.721)

NetRetM×Crisis -1.538 -1.452
(5.305) (5.360)

NetFlows×Crisis -9.413 -9.281
(5.964) (6.010)

MgrStake×Crisis -6.490 -6.486
(4.526) (4.519)

N 1,054 1,054 1,054 1,054
R2 0.164 0.165 0.195 0.196
Fund FE Yes Yes Yes Yes
Month FE No Yes No Yes
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Hedge fund characteristics and corporate bond trading (continued)

Panel B: Robustness
(1) (2) (3) (4)

Dependent variable: ∆ logCorpBondLNE
RiskLimit×Crisis 12.913∗∗∗ 12.881∗∗∗ 13.748∗∗∗ 13.746∗∗∗

(4.157) (4.155) (4.318) (4.317)

NoRiskLimit×Crisis -4.986 -5.025
(5.080) (5.081)

LiqMismatch×Crisis 0.308 0.312
(2.762) (2.762)

PortIlliq×Crisis 10.423 10.415
(6.919) (6.923)

ShareRes×Crisis -3.825 -3.818
(5.226) (5.226)

FinDur×Crisis 4.390 4.416
(6.093) (6.092)

LogNAV×Crisis 6.466∗∗ 6.477∗∗ 12.251∗∗∗ 12.276∗∗∗

(2.943) (2.943) (4.668) (4.676)

NetRetM×Crisis 0.914 1.061 -2.193 -2.103
(2.770) (2.790) (5.399) (5.475)

NetFlows×Crisis 4.081 4.135 -10.810∗ -10.692∗

(3.091) (3.088) (5.628) (5.663)

MgrStake×Crisis -4.091 -4.078 -5.399 -5.386
(3.560) (3.562) (4.349) (4.339)

N 2,599 2,599 1,054 1,054
R2 0.223 0.224 0.216 0.217
Fund FE Yes Yes Yes Yes
Month FE No Yes No Yes
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Online Appendix

This section includes additional material, including variable definitions, figures and tables.

A Variable Definitions

Variable Name Description
Cost Relative cost of customer trades to inter-dealer trades at the dealer-

bond-day level. See Eq. (1) for more details. Source: TRACE.
Cost (No RPT) Relative cost of customer trades to inter-dealer trades at the dealer-

bond-day level, excluding riskless principal trades (RPTs). Follow-

ing Harris (2015), we denote a trade as RPT if a dealer offsets it

within one minute by another trade in the same bond and with the

same size but opposite trade direction. Source: TRACE.
HF Expo Logarithm of the long exposures in corporate bonds of affiliated

hedge funds as of the previous month. Source: Form PF.
MF Shock Outflow-weighted holdings of a certain CUSIP by corporate bond

mutual funds during the crisis period. Source: eMAXX and Morn-

ingstar.
Log(TTM) Logarithm of the time to maturity of each bond. Source: Mergent

FISD.
Repo Shock Monthly change in dealer-level corporate repo outstanding coming

from prime money market funds. Source: FRBNY.
Repo Ratepre Average pre-crisis dealer-level corporate repo rate multiplied by the

Crisis dummy. Source: FRBNY.
Leverage Intensitypre The minimum leverage ratio minus the 2019:Q4 leverage ratio times

100, divided by the minimum. It is also multiplied by the Crisis

dummy. The minimum is 5% for banks subject to the SLR and 2%

otherwise. Source: SEC FOCUS, Annual Reports.
Continued on next page
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Table A.1 – Continued from previous page
Variable Description
RiskLimit The 12-month rolling average VaR with a time horizon of one

month and a probability of 5%. Source: Form PF.
Log(NAV) The logarithm of net asset value, or the amount of investor equity,

of the hedge fund. Source: Form PF.
PortIlliq The weighted average time (in days) it would take to liquidate the

hedge fund’s portfolio, assuming no fire sale discounting. Source:

Form PF.
ShareRes The weighted average time (in days) it would take for the investors

of the hedge fund to withdraw all the fund’s NAV. Source: Form

PF.
FinDur The weighted average maturity (in days) of the hedge fund’s bor-

rowing. Source: Form PF.
NetRet Net-of-fee monthly returns of the hedge fund. Source: Form PF.
NetFlows Net investor flows to the hedge fund, estimated as NetF lowsh,t =

(NAVh,t − NAVh,t−1 × (1 + rh,t))/NAVh,t−1. Source: Form PF.
MgrStake The percent of the net asset value of the hedge fund owned by the

managers or their related persons. Source: Form PF.
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B Additional Tables

Table B.1: Bond Liquidity, Mutual Fund Sales, and Hedge Fund Relations: Investment
Grade and High Yield Split

The sample goes from January 02, 2020 to March 20, 2020. Cost is the average transaction cost (relative
cost of customer trades to inter-dealer trades) at the dealer-bond-day level. Cost (NoRPT) is the average
transaction cost (relative cost of customer trades to inter-dealer trades) excluding riskless principal trades
at the dealer-bond-day level. Crisis equals one between March 5 and March 20. Following Borusyak and
Jaravel (2017), the first and last two-week intervals of the pre-crisis period are left in the omitted group.
HF Expo is the logarithm of the long exposures in corporate bonds (investment grade in columns (1)
and (2), high yield in columns (3) and (4)) of affiliated hedge funds as of the previous month. MF Shock
is a CUSIP-level proxy for bond sales by mutual funds during the crisis. It equals the outflow-weighted
holdings of a certain CUSIP by corporate bond mutual funds during the crisis period. Log(TTM) is the
logarithm of the time to maturity of each bond. Standard errors in parentheses are two-way clustered
at the bond and dealer level; ***,**,* indicate statistical significance at 1%, 5%, and 10%, respectively.

(1) (2) (3) (4)
Cost Cost Cost Cost

HF Expo×Crisis 0.662 -0.506 10.298∗∗ 10.277∗

(2.451) (2.749) (3.948) (5.226)

MF Shock×Crisis 2.120∗∗ 2.923∗∗∗

(0.779) (0.947)

HF Expo×MF Shock -0.090∗∗ -0.076∗∗∗ -0.119∗∗ -0.147∗

×Crisis (0.039) (0.026) (0.044) (0.071)

Log(TTM) 37.241∗∗∗ 11.383
(7.766) (7.602)

N 187,689 130,838 42,157 30,795
R2 0.360 0.595 0.237 0.530
Dealer FE Yes Yes Yes Yes
Day FE Yes No Yes No
Bond FE Yes No Yes No
Bond-Day FE No Yes No Yes
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Introduction

Market participation is critical for well-functioning financial markets and is a central feature of

many asset pricing models (Campbell, 2006). Indeed, canonical consumption models predict that

all individuals ought to participate in financial markets (e.g., Merton, 1975), yet many households

are disengaged with financial markets, even wealthy households (e.g., Haliassos and Bertaut, 1995;

Briggs et al., 2021). On the other hand, it is well appreciated that sophisticated market participants

play an outsized role in shaping market outcomes (Koijen et al., 2020), such that even small changes

in sophisticated participants trading behaviors may have important consequences (e.g., Jansen,

2021). Thus, it is a natural and important question to understand what drives the participation

and trading decisions of sophisticated investors.

In this paper, we address this question by studying how ambiguity, or Knightian uncertainty,1

shapes participation and trading decisions in options markets. The options market is a natural

laboratory to study participation decisions of sophisticated investors because, as options are in zero

net supply, changes in open interest reflect changes in options market participation. Employing

firm-day measurement of ambiguity and activity in options markets, we show that greater ambiguity

reduces both options market participation and options trading, particularly for difficult-to-value

options contracts. Moreover, when ambiguity is high, options trading is less informed for stock

prices and both writers and buyers of options earn lower delta-hedged returns. Overall, these

findings imply that ambiguity is an important market force, even for options markets that are

inhabited by sophisticated traders.

Turning to our empirical design, our contribution is facilitated by employing a recently de-

veloped ambiguity measure available at the firm-day level and using it to study options markets.

This measure is an empirically-applicable, risk-independent measure of ambiguity (Izhakian and

Yermack, 2017; Brenner and Izhakian, 2018; Augustin and Izhakian, 2020). This measure esti-

mates firm-level ambiguity from intraday returns data as the volatility of return probabilities. The

main advantages of this daily measure are its risk independence and its mitigation of potential

confounding effects that are difficult to address using lower frequency (e.g., monthly) proxies. In

contemporaneous work, Ben-Rephael et al. (2022) show that this ambiguity measure bears a strong

negative relation to daily trading volume in the stock market, and it dampens the relationship

1Risk is the condition in which outcomes are a priori unknown, but the odds of all possible outcomes are perfectly
known. Ambiguity is the condition in which the possible outcomes are a priori unknown, and the odds of these
possible outcomes are either unknown or not uniquely assigned. Knight (1921) defines the concept of (Knightian)
uncertainty as distinct from risk since the condition in which the set of events that may occur is a priori unknown
and the odds of these events are either unknown or not unique.
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between disagreement and stock trading, consistent with a valid empirical proxy for ambiguity.

In this paper, we focus on the options market instead of the underlying asset. This has three

main advantages. First, options are held in zero net supply. Since options are a zero sum game,

both buyers and sellers are affected by the same uncertainty when ambiguity increases.2 Second, the

rich variation in option contracts allows us to explore the effect of ambiguity along the dimensions

of investment maturity and valuation as captured by strike prices. Finally, the fact that multiple

option contracts are traded on the same stock allows to better control for firm unobservables.

We begin by studying how call and put options open interest (i.e., holdings that capture the

extent of options market participation) relates to the firm-day ambiguity measure at the daily

level. We find that high ambiguity is robustly and negatively related to participation. Specifically,

a standard deviation increase in ambiguity is associated with between 0.012 and 0.015 standard

deviations smaller call (or put) options open interest. Although this estimate reveals a relatively

small magnitude along the participation margin, the estimate is highly statistically significant and

its economic magnitude is similar to that of intraday volatility, which is known to have a tight

connection to options markets. Thus, our core finding is that ambiguity reduces participation of

relatively sophisticated options traders, a finding that supports predictions given by ambiguity

theory (e.g., Dow and Werlang, 1992; Easley and O’Hara, 2009).

Next, we turn to investigating how ambiguity relates to trading volume. The vast majority of

trading volume is driven by activities that, on net, cancel out (e.g., rebalancing and market making

activities). We find that ambiguity is also negatively related to options trading volume for both calls

and puts. Thus, our evidence on trading volume effects reflects an intensive margin effect, which

suggests that ambiguity increases inertia of making a planned trading decision, consistent with

ambiguity theory (e.g., Illeditsch, 2011; Illeditsch et al., 2021). Moreover, the estimate is opposite

in sign from risk, and of comparable economic magnitude given that the connection between risk

and options trading is well-established in the literature (e.g., Bandi et al., 2008).

Observing that ambiguity relates negatively to participation and trading in options markets,

we use the richness of the options contracts to provide two more refined tests. Specifically, there

are many options contracts available at the same time about the same firm but with different strike

prices and different expiration dates. The incentives facing traders of these different contracts

2This argument applies in similar force for long versus short positions at the stock level. However, as an empirical
matter, stock positions are dominated by long holders since the amount of short selling is small relative to outstanding
shares. Note that similar to a firm’s bond versus equity holders (Izhakian et al., 2022), call versus put option buyers
(and sellers) may face different levels of ambiguity since they face different partitions of the state space.
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may be substantially different. Following Muravyev and Ni (2020), we examine heterogeneity

in the moneyness and the maturity of options contracts. Consistent with underlying theoretical

mechanisms, ambiguity matters most for trading when options are difficult to value. That is, the

negative effects of ambiguity on open interest and trading are driven primarily by out of the money

options that are more difficult to value. The effects are also more concentrated in the options that

expire in the nearer term (within 3 months). We either see the opposite pattern or no consistent

pattern with risk, which contrasts with our findings on ambiguity.

Next, we turn to understanding the market implications of a reduction in participation and

trading in options markets. First, we investigate how ambiguity moderates the stock price infor-

mativeness of options trading. A well-established result in the literature is that options trading,

captured by the “put call ratio,” is informative of future stock returns (Pan and Poteshman, 2006).

We replicate this finding within our sample. Then, in a specification that interacts ambiguity with

the put call ratio, we find that a standard deviation increase in ambiguity reduces the stock price

informativeness of options trading by roughly 11% of the baseline effect. This return implication

is much stronger than the main effect of ambiguity on stock pricing; thus, our evidence reflects an

important reduction in the informativeness of options trading.

Finally, we investigate whether ambiguity relates to options returns. Specifically, we relate both

ambiguity and risk to delta-hedged cumulative returns over a five-day horizon. Consistent with

a classic options pricing perspective, we find a strong positive relation between risk and delta-

hedged returns. In contrast, we find that ambiguity relates negatively to delta-hedged returns,

and our estimate carries a magnitude of 20% to 50% of the economic magnitude of the estimated

risk coefficient. These findings are consistent with options being less desirable, suggesting that

ambiguity may play a quantitatively important role in options pricing.

Our daily measure of ambiguity is axiomatically rooted and is outcome independent.3 As

such, the measure is theoretically risk independent (Izhakian, 2017, 2020). While other proxies

suggested in the literature (e.g., disagreement among analysts’ forecasts, VIX, volatility-of-mean,

volatility-of-volatility, skewness, and kurtosis) capture various dimensions of uncertainty, they are

outcome dependent and therefore risk dependent. Indeed, we find that the correlation between

the aforementioned measures and risk is highly positive, whereas the correlation of our ambiguity

measure and risk is negative. For example, the correlation between risk and the volatility-of-mean

3The ambiguity measure applies exclusively to the probabilities of events, independently of the outcomes associated
with these events. Since the measure is outcome independent, the degree of ambiguity does not change if the outcomes
associated with events change while the induced partition of the state space into events remains unchanged.
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is 0.71, and the correlation between risk and the volatility-of-volatility is 0.57. Moreover, in a set

of robustness exercises, we observe that all of the findings regarding AMBG and options trading

hold when holding constant the existing proxies in the literature.

We make several contributions to the literature. First, we provide evidence that greater ambi-

guity dampens options trading intensity at the firm-day level. Most prior work on ambiguity and

trading either uses survey data or employs market-level proxies for ambiguity.4 In this respect,

the closest existing research to this paper is Ben-Rephael et al. (2022), which shows that firm-day

ambiguity relates negatively to trading in the stock market, and dampens the relation between

disagreement and trading. This paper makes a distinct contribution by focusing on how ambiguity

in the trading environment affects relatively sophisticated traders who trade in options markets.5

Moreover, the fact that options are in zero net supply allows us to measure asset participation in a

clean way. Besides trading intensity, we show that buyers and sellers actively reduce their positions.

Next, in studying how the trading decisions of options traders depend on ambiguity and risk,

we contribute to the literature on what shapes the trading decisions of sophisticated investors.

This literature has focused on the informed trades by myriad market participants, such as activists

(Collin-Dufresne and Fos, 2015), insiders (Cohen et al., 2012; Augustin et al., 2019), short-sellers

(Boehmer et al., 2008; Engelberg et al., 2012) and even options traders (Chakravarty et al., 2004). It

is important to understand what drives sophisticated investors to trade because these investors play

an outsized role in determining market outcomes (Koijen et al., 2020). At the same time, a broadly

held view about sophisticated investors is that they are more immune to non-classical frictions the

afflict retail traders. Indeed, much of this research shows that sophisticated investors react to the

market conditions (e.g., liquidity and valuation effects) created by other, more behavioral investors

(Cookson et al., 2022; Eaton et al., 2021), or that they act in a hyper-informed way with respect to

the timing of news (Rogers et al., 2017), and are skilled information processors (Engelberg et al.,

2012; Huang et al., 2020). In contrast to this commonly held view, our findings show that even

informed and sophisticated options traders respond to ambiguity in the trading environment, and

that this behavior matters for the informativeness of options trading and options pricing.

Our paper also contributes to the options literature in at least two aspects. First, we provide

4For example, a common proxy for market-level ambiguity is disagreement of analyst forecasts, which has been
used to study equity fund flows (Antoniou et al., 2015), aggregate expected return (Anderson et al., 2009), and the
term premium (Ulrich, 2013)

5The ambiguity measure is drawn from high-frequency trades and quotes in the TAQ database, which is derived
from stock market transactions. By studying the separate options market, this paper’s findings cannot be driven by
omitted microstructure characteristics.
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evidence on the link between ambiguity and options pricing. The vast majority of the literature on

options has focused on the pricing of volatility (e.g., Bandi et al., 2008; Feunou and Okou, 2019).

We show that ambiguity is an important component of options pricing, and thus, it should be taken

into account. It operates in an opposite way to the effect of risk and is economically significant.

Second, there is a growing interest in the effect of investment horizon (e.g., Dew-Becker and Giglio,

2016; Bandi et al., 2021; Van Binsbergen et al., 2019) and how difficult are securities to be valued

(e.g., Kumar, 2009; Baker and Wurgler, 2006; Stambaugh et al., 2015) on trading behavior and

pricing. Our findings on options trading show a clear role for maturity and moneyness in shaping

options trader incentives. In showing the importance of these aspects of options markets, our

findings add to the recent empirical evidence on horizon investments and horizon pricing. We also

add to the evidence on hard-to-value securities, which are at the heart of the mispricing literature

(van Binsbergen et al., 2021). We show that investors tend to close positions of hard-to-value

options earlier in the presence of ambiguity.

Finally, we shed empirical light on the economic effect of ambiguity rather than aversion to it.

In this respect, much of the empirical literature focuses on investors’ aversion to ambiguity, based

mostly on experiments. Typically, individuals exhibit aversion to ambiguity, preferring alternatives

with clearer probabilities over the ones involving ambiguous probabilities (Ellsberg, 1961). Aversion

to ambiguity has been shown to affect human decisions (Halevy, 2007; Crockett et al., 2019) and to

be economically relevant, both in experimental market settings (Bossaerts et al., 2010; Ahn et al.,

2014) and among business owners and managers (Chesson and Viscusi, 2003). A few studies that

use trading data to capture ambiguity aversion are Williams (2014); Thimmea and Völkertb (2014);

Li et al. (2016). Relating to work that focuses on ambiguity aversion, we provide direct evidence on

the effect of firm level ambiguity and focus on ambiguity itself, distinct from ambiguity aversion.

1 Motivation

In this section, we provide theoretical motivation for our empirical tests, and discuss in greater

detail the expected effect of ambiguity on stock options.

1.1 Ambiguity and trading behavior

A common misconception is that ambiguity and risk bear the same implications. However, ambigu-

ity and risk are conceptually different, and might have different implications. To illustrate, consider

a decision whose payoff is determined by a flip of an unbalanced coin, for which the investor does

not know the odds of heads or tails. The payoff is $100 in the case of heads, and $0 in the case
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of tails. Suppose that prior to the coin being flipped, the payoff in the case of heads is suddenly

changed to $200. Since no new information about probabilities has been obtained, the investor

has no reason to change the assessed probabilities or the perceived degree of ambiguity. There-

fore, ambiguity is outcome independent up to a state space partition, since it applies exclusively to

probabilities. However, the risk does increase in this example, since it is outcome dependent.

The literature on decision making under ambiguity has proposed different models, which are

“seemingly different [...] rarely related to one another, and often expressed in drastically different

formal languages” (Epstein and Schneider, 2010). However, based upon these models, the literature

has derived a few complimentary theoretical predictions regarding decision makers’ trading behavior

in response to ambiguity.

The first prediction is that of limited participation − that is, when ambiguity associated with

a stock increases, the marginal investors reduce their holdings in that stock. The idea that, for

high ambiguity, investors limit their market participation or do not participate at all is supported

by several studies. For example, Dow and Werlang (1992) show that for high enough ambiguity

or aversion to ambiguity, investors would not participate in the market to the extent that there

will be no trade. Cao et al. (2005) show that, when ambiguity dispersion is sufficiently large,

investors who face high ambiguity choose not to participate in the stock market. Epstein and

Schneider (2007) stress that “an increase in confidence—captured in our model by a posterior set

that shrinks over time—induces a quantitatively significant trend towards stock market participa-

tion and investment.” Easley and O’Hara (2009) attribute limited market participation to aversion

to ambiguity. Using similar settings, Ui (2011) shows that, in a rational expectations equilibrium

with high enough ambiguity or low enough risk, investors limit their market participation. Fi-

nally, using the volatility of aggregate volatility as a measure of ambiguity about market volatility,

Kostopoulos et al. (2021) find that ambiguity averse investors reduce their stock market exposure

when ambiguity increases.

The second prediction is that of inertia − that is, when ambiguity associated with a security

increases, the marginal investors become more reluctant to rebalance their holding positions and,

therefore, adjust their holdings more slowly. In an extreme case, investors even “freeze up” their

trading activity, avoiding rebalancing their holdings. The idea that ambiguity causes investors

to adjust their holding more slowly, perhaps for information acquisition, is supported by several

studies. For example, Simonsen and Werlang (1991) introduce the concept of portfolio inertia

due to ambiguity, and Epstein and Wang (1994) extend it into a more general form. Epstein
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and Schneider (2010) characterize the conditions for portfolio inertia. Illeditsch (2011) shows that

investors’ desire to hedge ambiguity leads to portfolio inertia, especially when facing surprising

news. Further, Illeditsch et al. (2021) show that risk and ambiguity aversion may also lead to

information inertia, consistent with low trading by households.

These two core predictions suggest that ambiguity, and aversion to it, have a direct effect on

investors’ trading behavior. Other theoretical work includes, Guidolin and Rinaldi (2010) who show

that, for sufficiently high ambiguity, a large portion of traders withdraw from trading and market

breakdowns. De Castro and Chateauneuf (2011) show that a greater aversion to ambiguity implies

less trading. Easley et al. (2013) investigate the way ambiguity regarding hedge fund investment

strategies affects asset prices through trading and liquidity demand.6

1.2 Ambiguity and options markets

The derivative market provides a natural laboratory for examining the effect of ambiguity on trading

behavior. It provides a direct way to test the aforementioned theoretical predictions empirically.

Furthermore, derivative securities allows the refinement of the predictions above regarding the

implications of ambiguity for different cases.

Most models of decision-making under ambiguity (e.g., Schmeidler, 1989; Gilboa and Schmei-

dler, 1989; Bewley, 2002) assert that ambiguity-averse investors act as if they overweight the

probabilities of bad events (events with negative payoff) and underweight the probabilities of good

events (events with positive payoffs). In the perspective of option buyers out-of-the-money is a bad

event, and in-the-money is a good event. In the perspective of option writers out-of-the-money

is a good event, and in-the-money is a bad event. However, for both option buyers and writers,

a higher ambiguity reduces the perceived expected payoff of the option (Augustin and Izhakian,

2020), which motivates both to reduce (or close) their position in the option. In contrast, when

risk rises, both buyers and writers are motivated to increase (or open) positions. Buyer may be

seeking to increase their hedging or, alternatively, motivated by better speculative opportunities.

Writers are motivated by the higher demand and the higher premium. Since options are assets in

zero-net supply, these predictions can be directly tested in the options market using options’ open

interest.

When ambiguity rises, trading volume in option would also decrease, as both buyers and writers

decrease (or close) their positions, and less contracts are available for trade. In addition, due to

6A further discussion of the implications of ambiguity for trading behavior is provided in recent surveys (e.g.,
Epstein and Schneider, 2010; Guidolin and Rinaldi, 2013).
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(portfolio and information) inertia, trading would slow down, since writers and buyers would be

waiting for additional information. Concerning pricing, since the perceived expected payoff for both

writers and buyer declines when ambiguity rises, writers would require a higher premium, whereas

the buyers would be willing to pay a lower price. Therefore, liquidity would decline and bid-ask

spread would increase. However, in the short run a counter effect might accrue, since both writers

and buyers may desire to close position quickly. In this respect, other considerations may play a

role in options trading behaviour. For example, option writers may be forced to close positions

quickly, due to margin constraints.

Besides margin constraints, the option market introduce other aspect that may affect the re-

lation between ambiguity trading behavior. It is well documented that out-of-the-money options

are not as strongly related to their underlying assets as in-the-money options, and are therefore

more complex to evaluate. For this reason, one would expect out-of-the-money options to be more

sensitive to ambiguity and also to risk. Similar to the volatility (risk) process, the ambiguity—the

volatility of probabilities—process is a mean-reverting process. Therefore, one would expect short

maturity options to be more sensitive to ambiguity than long maturity options. Finally, the per-

spective of option writers and buyers regarding event classification as good or bad may depend upon

their other holdings. For example, in the perspective of naked put option buyers (for speculative

motives), in-the-money is a good event. In contrast, in the perspective of protective put option

buyers (for hedging motives), in-the-money is a bad event. Therefore, the effect of ambiguity on

trading behavior may be different, conditional upon the dominate group.

2 The data

The primary data sources for our analysis are: Intraday Trade and Quote (TAQ) data for the

estimation of the daily firm-specific degree of ambiguity, risk, other uncertainty factors (including

volatility-of-mean, volatility-of-volatility, skewness and kurtosis) and liquidity; OptionMetrics data

for options’ trading volume, open interest and liquidity measures; Center for Research in Security

Prices (CRSP) data for the estimation of trading volume, number of shares outstanding, and stock

prices; and I/B/E/S (IBES) data for analysts’ coverage.

In this paper, we focus on exploring the effect of ambiguity on options’ trading, pricing, and

liquidity. Since options expected value is determined by the ambiguity and risk of the underlying

asset, we measure the ambiguity, risk, and other dimension of uncertainty at the stock level.
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2.1 Estimating ambiguity

To measure ambiguity, we follow recent literature’s (Izhakian and Yermack, 2017; Augustin and

Izhakian, 2020; Izhakian et al., 2021) implementation of the expected utility with uncertain prob-

abilities (EUUP, Izhakian, 2017) framework. The primary motivation for using this framework is

that it naturally delivers a risk-independent measure of ambiguity, denoted by ℧2.7 In particular,

the degree of ambiguity can be measured by the volatility of uncertain probabilities, just as the

degree of risk can be measured by the volatility of uncertain outcomes. Formally, the measure of

ambiguity is defined as:

℧2 [X] ≡
∫

E [φ (x)] Var [φ (x)] dx, (1)

where φ (·) is an uncertain probability density function, and the expectation E [·] and the variance

Var [·] are taken using the second-order probability measure ξ (i.e., probabilities of probability

distributions) on a set P of probability measures (Izhakian, 2020). The measure of ambiguity

defined in Equation (1) is distinct from aversion to ambiguity. The former is a matter of beliefs

(or information) and measured from data, while the latter is a matter of subjective attitudes and

endogenously determined by the empirical estimations.

To estimate the measure of ambiguity in Equation (1), we use intraday stock data from the

TAQ database. We compute the degree of ambiguity for each stock each day. To this end, we elicit

a set of priors for each stock each day. We assume that the intraday equity return distribution for

each time interval during the day in a given day represents a single prior (probability distribution)

in the set of priors and the number of priors in the set is assumed to depend on the number of time

intrevals in the day. Each prior in the set is elicited from thirty-second observed intraday returns

on the firm’s equity, over a time interval of 1170 seconds during the trading hours.8 Thus, a set

of priors consists of 20 realized distributions, at most, over a day. By the principle of insufficient

reason (Bernoulli, 1713; Laplace, 1814), each distribution is assigned an equal weight. The rest of

the estimation of Equation (1) follows the methodology in Izhakian and Yermack (2017), Augustin

and Izhakian (2020), and Izhakian et al. (2021), which for completeness is detailed in Appendix A.

We denote the daily estimation of ℧2 by AMBG.

7In the EUUP framework, a decision-maker possesses a set of priors, equipped with second-order beliefs (i.e.,
probabilities of probability distributions). An ambiguity-averse decision maker, in this framework, does not compound
these probabilities linearly due to her aversion to ambiguity.

8Our findings are robust to the use of different time intervals, implying a different number of distributions per
day.
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2.2 Estimating risk and other moments

In our analysis, we control for risk. For consistency, we measure the daily risk using the same

thirty-second returns that are used to measure the degree of ambiguity. For each stock on each

time interval, we compute the variance of thirty-second intraday returns. We then measure the

firm’s daily degree of risk as the mean of these values over the day, normalized to daily terms.9 We

denote the daily estimation of risk by RISK. Note that the same variances of returns, estimated

over the intraday time intervals, are used in our ambiguity and risk measures.

We estimate the other uncertainty measure similarly. In particular, we measure the volatility-

of-mean (VOM ) as the variance of the time-interval average return over the day, and the volatility-

of-volatility (VOV ) as the variance of the time-interval variance over the day. In addition, we use

the thirty-second intraday returns to estimate the skewness (SKEW ) and kurtosis (KURT ) for

each stock in each day, similarly to RISK.

2.3 Options trading and liquidity measures

Our main analysis focuses on the daily effect of ambiguity on trading behavior (market participation

and liquidity). To this end, we use the option market as a laboratory, as it offers a cleaner setting

to study such behavior (e.g., stocks are held in positive supply, and an aggregate exit from the

market is not feasible). We employ several measures of option trading and liquidity extracted from

OptionMetrics data. To reduce noise due to option contract expiration or unusual maturities, we

only consider call and put options with maturities of 7 to 365 calendar days. To reduce noise due

to extremely illiquid options, we apply the filters in Muravyev (2016), Christoffersen et al. (2018),

and Muravyev and Ni (2020). In particular, we keep option contrasts with absolute delta between

0.1 to 0.9; positive open interest; and a valid bid-ask spread information. We drop contracts with

bid-ask spread to midpoint ratio greater than 70%; bid-ask spread greater than $3; and midpoints

lower than $0.10 cents.

Our first measure of market participation is based on the call and put options open interest

(COI and POI, respectively), calculated as the end of the day open interest of call or put options

written on the firm equity, divided by the number of its shares outstanding. Open interest allows

us to directly explore whether investors reduce their options positions and limit their market par-

ticipation.10 Our second measure of market participation is based on the call and put options daily

9For robustness, we also apply the Scholes and Williams (1977) correction for non-synchronous trading (e.g.,
French et al., 1987). The findings are essentially the same.

10COI and POI are lagged by one day in OptionMetrics since November 28th, 2000; therefore, we use OptionMetrics
reported values from the next trading day.
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volume (CVOL and PVOL, respectively), calculated as the total daily trading volume of call or

put options written on the firm equity, divided by the number of its shares outstanding. Option

volume allows us to explore how quickly investors rebalance their option positions. To measure

option liquidity, we use the call and put options’ bid-ask spread (CBAS and PBAS, respectively),

based on the end of day bid and ask quotes, divided by the bid-ask spread midpoint.

We control for several additional variables, commonly used in the literature, including the

natural logarithm of firm size (LnSize), the natural logarithm of firm book-to-market ratio (LnBM ),

institutional holdings (InstHold), daily stock return (RET ), cumulative 21-day returns (CumRet),

the natural logarithm of one plus the number of analysts covering the firm (LnNumEst), and the

natural logarithm of one over the stock average price (ln 1
AvePrc).

In addition, we also report statistics and correlations for the stock (the underlying asset) trading

volume (SVOL), measured by the daily share trading volume divided by the number of shares

outstanding. We obtain trading volumes and the number of shares outstanding from CRSP daily

data. Finally, we consider the relation between AMBG, stock return predictability, and option

pricing. Table B.1 details all the variables employed in our analysis.

2.4 Summary statistics

Our main sample consists of 6,766,488 day-firm observations from January 2002 to December 2018

(4,253 trading days) of 4,757 unique firms. It includes all common stocks with Share Code 10

and 11 and a daily price greater than or equal to $5 (Amihud, 2002). Estimating our main variable

of interest, AMBG, for every stock and day, requires a minimal number of intraday observations,

as detailed in Appendix A. Therefore, our sample starts in January 2002.11

Table 1 reports the summary statistics of the pooled sample. Panel A reports statistics for

the stock variables. The average (median) firm size is 8, 408.14 (1, 899.96) million dollars, and the

average (median) daily turnover (SVOL) is 1.193% (0.805%) of the outstanding shares.

[ Table 1 ]

Panel B reports statistics for the option variables. The average (median) number of call and put

options is 15.30 (9.00) and 15.55 (9.00), respectively. The call and put options’ average (median)

open interest is 0.794% (0.29%) and 0.656% (0.194%) of the outstanding shares, respectively. The

average (median) daily trading volume of call and put options is 0.05% (0.005%) and 0.036%

11For the period prior to 2002, there is only a very small number of firms that have the sufficient information
required to estimate the daily ambiguity measure.
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(0.002%) of the outstanding shares, respectively. The trading volume and open interest of call

options is higher than that of put options, indicating that call options are more activity traded

relative to put options, perhaps due to speculative motives. Finally, the call and put options’

average (median) percentage bid-ask spread is 14.05% (11.28%) and 13.02% (10.26%) of the spread

midpoint.

Table 2 reports the cross correlations. Panel A reports the univariate correlations between

AMBG, RISK, and the main variables analyzed in the paper. The correlation between AMBG and

RISK is−0.28, implying that, on average, ambiguity is lower on days with high volatility. Note that,

as detailed in Appendix A, to estimate ambiguity, we assume that returns are normally distributed.

In this class of continuous parametric probability distributions, a change in the parameter of the

distribution σ modifies the partition of the state space (Papoulis and Pillai, 2002); thereby, changes

the degree of ambiguity. Clearly, a change in σ changes risk.12 To account for this relation, in all

our regression tests, alongside AMBG, we control for RISK to ensure that our findings are not

driven by the correlation between these two uncertainty measures.

[ Table 2 ]

Panel A of Table 2 reveals that AMBG is negatively correlated with option trading volume

and open interest. AMBG is also negatively correlated with stock (the underlying asset) turnover

(SVOL). Overall, the correlation matrix indicates that an increase in ambiguity is contemporane-

ously associated with a lower trading activity for both options and the underlying asset, whereas

an increase in risk is contemporaneously associated with a higher trading activity.

A few earlier studies use higher distribution moments as proxies for uncertainty. Panel B

(Panel C) of Table 2 reports the univariate (multivariate) correlation between AMBG and these

proxies, providing important insights. Panel B shows that AMBG is negatively correlated with

VOM and VOV, with a correlation of −0.18 and −0.08, respectively. At a first glance, one might

find these findings surprising, since the variation in the underlying distributions should be positively

correlated with the variation in mean and precision of the distribution. However, the strong positive

correlation between RISK and VOM and VOV (0.71 and 0.56, respectively) suggests that the

relation between AMBG and these two proxies is dominated by the latent variable RISK. Note

that VOM and VOV are strongly related to RISK, since as RISK they are outcome dependent.

12To see the intuition for the negative relation between ambiguity and risk in this case, suppose that σ increases to
infinity. In that case, risk becomes infinite and the degree of ambiguity tends to zero, since all the normal distributions
in the set of possible distributions converge to a uniform distribution, implying no uncertainty about the probabilities
(i.e., no ambiguity is present).
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A subsequent analysis in Columns 2-4 of Panel C reveals that once RISK is controlled for, the

relation between AMBG and VOM and VOV, becomes positive as expected. Column 5 indicates

that kurtosis is also positively correlated with AMBG, while skewness is negatively correlated with

AMBG. We control for all these measures in our analysis. Further, the analysis below shows that

VOM and VOV deliver similar findings to those of RISK.

3 Participation and trading in options markets

In this section, we seek to understand the empirical relation between ambiguity and participation

in options markets, as well as the relation between ambiguity and trading in options markets

(conditional on participation). We expect ambiguity to discourage both participation and trading

in options markets, but for different reasons. On the extensive margin, we expect that ambiguity’s

tendency to shake investor confidence, thereby to decrease participation in options markets (e.g.,

Easley and O’Hara, 2009). However, even conditional on holding an option contract, ambiguity

tends economic agents toward inertia, which would tend to decrease trading volume (Epstein and

Schneider, 2010; Illeditsch, 2011).

To evaluate the participation margin, we estimate how ambiguity (AMBG) relates to open

interest on options, while treating calls and puts separately. If stock options open interest increases

for a firm, this is a clear indication of greater participation. Unlike stocks, options are assets in zero

net supply. Therefore, greater open interest implies more participation. To evaluate the intensive

margin effect on trading, we examine options trading volume directly. As an empirical matter,

trading volume reflects mostly trades among active participants (not changes in participation)

because trading volume vastly exceeds changes to option open interest on any given day. Thus,

variation in trading volume is mostly driven by decisions to buy and sell by traders who, on net,

have already decided to participate in the options market.

3.1 Option open interest

We investigate how AMBG relates to participation in the options market by relating it to open

interest in a firm’s option’s contracts at the firm-day level in the following specification:

OpenInterestj,t+i = α+ β ·AMBGj,t + γ · RISKj,t + Γ · CONTROLSj,t + ηj + θt + ϵj,t, (2)

where the dependent variable, Open Interestj,t+i, is the open interest in options contracts relating

to firm j held on date t+ i, where i is the number of forward days. We estimate this specification

separately for each i = 0, . . . , 5 to illustrate the short run dynamics of open interest. We also
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estimate the specification separately for call options and for put options to highlight asymmetries

driven by optimism or pessimism about the underlying stock.

The main coefficient of interest is β, which is the coefficient estimate on AMBG. To distinguish

AMBG from underlying riskiness of the stock, persistence of past options participation decisions

and other explanations, we include RISK and other notable controls in the specification. The

vector of controls (CONTROLS ) includes log firm size (LnSize), log book-to-market ratio (LnBM ),

cumulative stock returns (CumRet), log of one plus the number of analysts’ estimates (LnNumEst),

institutional holdings (InstHold), and log one over average price (ln 1
AvePrc), as well as the 21-

trading-day trailing average of the dependent variable (Open-Interest), AMBG and RISK, which

account for their persistence. To reduce the effect of outlier observations, all raw variables are

trimmed at the top and bottom 0.1% of their sample distribution. We also include firm and date

fixed effects across all specifications, and we double cluster standard errors by firm and date to

account for persistence over time and common shocks affecting many firms at the same time.

By controlling for RISK, we also provide a natural benchmark comparison for the coefficient on

AMBG to be estimated within the same regression. Prior work has found that RISK is strongly

and positively related to trading in options markets. Thus, this makes RISK a natural control

variable to include, while also serving as a useful quantitative benchmark.

[ Table 3 ]

Table 3 reports the findings from estimating Equation (2). Panel A reports findings for call

option open interest for trading days t to t+5, and Panel B reports the analogous findings for put

options. Across all specifications, AMBG exhibits a negative and statistically significant relation

to option open interest. For call options, a standard deviation increase in ambiguity on date t

is associated with a reduction in call option open interest of 0.012 standard deviations. As we

consider a longer time lag, the magnitude on the AMBG coefficient estimate increases to −0.014.

In contrast, the coefficient on RISK is much smaller and statistically and economically insignificant

by day t+5. Turning to the relation to put option open interest, we observe a similarly strong and

significant negative relation between AMBG and put option open interest that, like the coefficient

estimates in Columns 1 through 5, increases slightly with the time horizon. The coefficient estimates

for RISK, exhibit similar economic magnitudes to those of AMBG and are in the opposite sign.

Our estimated coefficients on AMBG reveal a decrease in options market participation that is

similar in magnitude for call options and put options. This decrease in participation in options
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markets is well predicted by theory (Cao et al., 2005; Easley and O’Hara, 2009), and it contrasts

with the pattern of coefficient estimates for RISK.13 By contrast to our findings on relation between

AMBG and open interest, RISK seems to motivate participation, especially in put options.

As a complement to our main analysis, we estimate a vector autoregression (VAR) model to

more fully identify the dynamics of the relations of ambiguity and risk to open interest (again,

separately for call options and put options). The VAR we consider includes five lags for ambiguity,

risk, and open interest, governed by the following equations:

OIj,t = α1 +

5∑
i=1

β1,i ·AMBGj,t−i +

5∑
i=1

γ1,i ·RISKj,t−i +

5∑
i=1

δ1,i ·OIj,t−i + Γ · CONTROLSj,t + ηj + θt + ϵ1,j,t;

AMBGj,t = α2 +

5∑
i=1

β2,i ·AMBGj,t−i +

5∑
i=1

γ2,i ·RISKj,t−i +

5∑
i=1

δ2,i ·OIj,t−i + Γ · CONTROLSj,t + ηj + θt + ϵ2,j,t;

RISKj,t = α3 +

5∑
i=1

β3,i ·AMBGj,t−i +

5∑
i=1

γ3,i ·RISKj,t−i +

5∑
i=1

δ3,i ·OIj,t−i + Γ · CONTROLSj,t + ηj + θt + ϵ3,j,t,

where CONTROLS is the same vector of control variables we include in our regression specifications

above, measured at date t.

[ Figure 1 ]

The VAR specification allows for nonlinear dynamics and feedback between ambiguity and

risk. Despite this different in richness, the VAR delivers similar qualitative findings to our main

specifications. Specifically, Panels A and B of Figure 1 present the impulse response function for a

standard deviation increase in ambiguity at date t. Consistent with our regression evidence, higher

ambiguity is negatively related to participation in options markets, and this effect accumulates

over time. Panels C and D present the impulse response functions for RISK, showing that risk is

positively related to both put and call open interest with a similar accumulation of the effect as

the time horizon lengthens.

Overall, we find robust evidence that ambiguity is negatively related to options markets open

interest. The economic magnitude of this reduction in option market open interest is comparable

to the analogous effect of risk; it is also opposite in sign. This latter finding highlights a sharp

economic distinction between ambiguity and risk in options markets. Unlike risk, which encourages

options market participation, ambiguity discourages participation in options markets.

13Our findings are also in line with prior study by Izhakian and Yermack (2017), who show that higher expected
ambiguity motivates the early exercise of options by executives.
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3.2 Options trading volume

Having established that AMBG exhibits a significant and negative relation to participation in

options markets, we now turn our attention to understanding the intensive margin decision to

trade options. Since trading volume in options markets vastly exceeds changes to open interest,

trading volume in calls and puts mostly reflects these intensive margin decisions.

Thus, we estimate how options trading volume relates to AMBG and RISK by estimating a

specification like the one we used for open interest, but replacing the dependent variable with

options trading volume:

OptionV olumej,t+i = α+ β ·AMBGj,t + γ · RISKj,t + Γ · CONTROLSj,t + ηj + θt + ϵj,t, (3)

where the dependent variable, Option Volumej,t+i. is the trading volume on call options (or put

options, separately) on day t + i for options linked to firm j. As in the tests with open interest

as the dependent variable, we estimate the relation between AMBG and trading volume at date

t+ i until five trading days later (trading day t+5). In addition, we consider how RISK relates to

options trading volume as a benchmark for the estimated economic magnitudes.

[ Table 4 ]

Table 4 presents the findings from estimating this specification for call trading volume (Panel A)

and for put trading volume (Panel B). A standard deviation increase in AMBG is associated with

a 0.04 standard deviation reduction in call trading volume contemporaneously. The estimated

magnitude reduces as we consider longer time lags between AMBG and call trading volume. At

a five-day lag (day t+5), a standard deviation increase in AMBG is associated with only a 0.016

standard deviation decrease in call trading volume. These estimated magnitudes are opposite

in sign from the magnitude on the within-day volatility term, RISK, and roughly one-third its

magnitude: a standard deviation increase in RISK is associated with 0.137 standard deviations

more call trading volume. This comparison to RISK highlights that, although equity market

volatility stimulates trading in options markets (positive coefficient estimate on RISK ), AMBG

discourages trading. This negative estimate parallels our analogous specification for open interest.

However, trading volume mostly reflects trading decisions that are conditional on participation

in the options market. In this way, the estimated reduction in trading volume likely reflects a

reluctance of existing options traders to trade, not the decision to participate in options markets

at all.
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Panel B of Table 4 presents a similar pattern for put trading volume for both the coefficient

estimates on AMBG and RISK. Among other things, the similarity in the findings for calls and

puts rules out any alternative explanation that predicts a directional movement in options markets.

As a complement to this main analysis, we present evidence from a vector autoregression (VAR)

that relates AMBG and RISK to trading volume of puts (and separately calls). The VAR we

estimate follows the same structure as the one we employed in the analysis of options open interest

with five lags of AMBG, RISK, and trading volume in the system of equations.

[ Figure 2 ]

In Figure 2, the impulse response confirms the intuition from the main regression analysis.

Notably, Panels A and B illustrate that an increase in ambiguity generates a reduction in both put

and call option trading volume that converges relatively quickly to a steady state. By contrast, an

increase in risk leads to an increase in both call and put options trading volume, as is illustrated

in the impulse responses in Panels C and D.

Overall, the findings on trading volume suggest that ambiguity reduces trading volume in op-

tions markets, above and beyond the market participation effects on options market open interest.

These findings are consistent with models of ambiguity that predict that ambiguity leads to greater

inertia in risky and ambiguous decision making (e.g., Illeditsch, 2011; Illeditsch et al., 2021).

3.3 Heterogeneity by option characteristics

We now exploit the richness of the option contracts to provide a series of more refined tests. Namely,

at any given date, there are many different options available that are linked to the same underlying

firm. As these options differ on their expiration date and strike price, the incentives facing options

traders can be quite different for different options relating to the same underlying security. The

literature on options has identified several characteristics that capture the incentives of options

traders − most notably, the moneyness of the option (or its delta) and the maturity of the option

(measured by the time to expiration). We consider heterogeneity in options trading activity by

each of these characteristics.

To operationalize the heterogeneity tests in this section, we note that the full underlying data

set is at the option contract × firm × date level, and the tests in the previous section collapsed

this data set to the firm × date level. We collapse to the group × firm × date level for groups of

options contracts that share the same moneyness characteristics or maturity characteristics. For
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each characteristic, we split the sample into three groups. We estimate specifications of the form:

DepV ariablej,t+i,g = α+
3∑

g=2

αgGroupDumj,t,g +
3∑

g=1

βg ·AMBGj,t ×GroupDumj,t,g + (4)

3∑
g=1

γg · RISKj,t ×GroupDumj,t,g + δ · CONTROLSj,t + ηj + θt + ϵj,t,

where DepV ariable is either OpenInterest or OptionV olume, aggregated to the stock-day-group

level. The coefficients of interest are the βg coefficient estimates on the AMBG× GroupDum terms,

which captures how trading activity of options in group g relates to ambiguity at the firm-day level.

The degree to which these coefficient estimates are different captures how important the grouping

(by moneyness or maturity) is for explaining the heterogeneity in the relation of AMBG to option

trading activity. As in the main specifications, we include firm and date fixed effects, and the full

set of CONTROLS that we include in the main specifications. The standard errors are clustered by

firm and date, which in this specification additionally accounts for cross-correlations within-firm,

across options, as well as the usual accounting for serial correlation and common shocks.14

3.3.1 Moneyness

An important characteristic of an option is the option’s delta or ∆, which describes the sensitivity

of the option price to the underlying stock price. The ∆ is signed, with put options taking on

negative values and call options taking on positive values. To place put options and call options on

the same footing, we consider delta’s absolute value |∆| for grouping options by their sensitivity

to the underlying stock price. We refer to this sensitivity to the underlying price as moneyness,

following Muravyev and Ni (2020), and we group options into three groups: “out of the money”

(0.1 ≤ |∆| ≤ 0.4), “at the money” (0.4 < |∆| < 0.6), and “in the money” (0.6 ≤ |∆| ≤ 0.9).

We present the full estimates of Equation (4) for date t through date t+ 5, separately for call

options and put options in Table B.3. The findings of the open interest are reported in Panel A of

Table B.3. As in the main tests, the coefficient estimates on AMBG and RISK strengthen slightly

from date t to date t + 5. To summarize the heterogeneity by moneyness, we present plots of

these coefficient estimates as of date t + 5 for each of the three grouped terms for both AMBG,

and as an instructive benchmark, RISK (both separately for calls and puts). Panel A of Figure 3

indicates that most of the negative relation between AMBG and open interest is driven by out-of-

14An alternative strategy to this stacked specification would be to estimate the original specification in Equation (2)
separately by group. Such a specification would allow the fixed effects and controls to take on different values by
group. We obtain qualitatively similar findings if we estimate such a split-sample specification.
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the-money options and at-the-money options (0.1 ≤ |∆| ≤ 0.4 and 0.4 < |∆| < 0.6, respectively).

In comparison to in-the-money options, these options are more difficult to value, and thus, are more

sensitive to the ambiguity in the trading environment. Further, we see a similar pattern for both

call and put options, which reinforces our interpretation.

[ Figure 3 ]

By contrast, Panel B of Figure 3 shows that the positive and significant relation between RISK

and open interest is driven by the impact of RISK on in-the-money options only. Apart from the

directional difference in the relation to open interest, this difference in the subsample that drives

the RISK term’s relation provides further evidence on the distinction between AMBG and RISK.

Turning to our evidence on trading volume, we note that the dynamics of the results on trading

are distinct because trading volume is not cumulative over the date t to t + 5 horizon, whereas

open interest is. As in the open interest tests, the full heterogeneity results for trading volume are

presented in the Panel B of Table B.3. Because the effect of AMBG and RISK on date t is the

strongest, we present plots based on the date t relation to more clearly highlight heterogeneity in

the moneyness of the options. Panels C and D of Figure 3 present these plots. In Panel C, we

see heterogeneity in the relation of AMBG to open interest that is driven by the out-of-the-money

options (for both calls and puts). Similar to the participation margin, as ambiguity increases, it

tends to discourage trading in lower delta options that are more difficult to value (and generally

more sensitive to changes in probabilistic assessments). By contrast, in Panel D, we see little

heterogeneity in the RISK term, either for calls or puts, consistent with the theme that AMBG

and RISK capture distinct economic phenomena related to options markets.

3.3.2 Maturity

Following Muravyev and Ni (2020), we conduct a similar analysis by splitting the option sample

into whether they expire soon (< 3 months), at an intermediate horizon (between 3 and 6 months),

or at a long horizon (> 6 months). Given this grouping by different option maturities, we estimate

analogous specifications to our moneyness heterogeneity tests for both open interest and trading

volume. The full estimates are presented in Table B.4. We summarize the heterogeneity in the

estimated impact of AMBG and RISK in Figure 4. Given the cumulative nature of the open

interest variable and the short-lived impacts for trading volume, the impact on open interest is

considered as of date t + 5, and on trading volume as of date t. Panels A through D of Figure 4

present these estimates, with separate panels for AMBG and RISK.
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[ Figure 4 ]

Panels A and B of Figure 4 present the heterogeneity by maturity of the estimated relation of

AMBG and open interest as of date t + 5. Consistent with the intuition that near-term expiring

options are more sensitive to frictions in the trading environment, we see that most of the negative

relation between AMBG and option open interest is driven by the shorter maturity options (i.e.,

those expiring within 3 months of date t). Longer-term options do not exhibit a meaningful relation

betweenAMBG and option open interest. By contrast, the heterogeneity in the estimated coefficient

of RISK with respect to maturity is not meaningful, and it is not consistent across call versus put

options.

Panels C and D of Figure 4 present the analogous results on heterogeneity by maturity of

the estimated impact of AMBG and RISK on options trading volume as of date t. Similar to

the findings on open interest, the negative relation between AMBG and trading volume is driven

mostly by a reduction in the trading of shorter maturity options. One rationale for the greater

responsiveness of the shorter-term-maturity options to AMBG is that the ambiguity measured

today is arguably more relevant to the trading decisions regarding options with nearer-in-time

expiration dates. Overall, these findings across heterogeneity on maturity support the view that

the differences in responsiveness of trading activity to maturity are driven by ambiguity-induced

frictions to participating in the options market.

4 Return predictability

Thus far, we have focused on the relation between AMBG, market participation, and trading. In

this section, we examine the relation between AMBG and two aspects of returns: stock return

predictability and option pricing. First, we extend existing literature showing that trading in the

option market has predictive power for stock returns (e.g., Pan and Poteshman, 2006) by exploring

how AMBG affects the relation between options trading and stock return predictability. Second,

we explore the effect of AMBG on option return.

4.1 Stock return predictability

It is well established that options trading contains information about future stock prices (Pan and

Poteshman, 2006). Given our findings that ambiguity dampens options market trading, a natural

question is how this affects the informativeness of options trading for stock returns. Therefore,

we consider how AMBG interacts with the informativeness of the direction of trading in options

markets. We focus on two measures to link information from the option market and stock returns.
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The first measure is a variant of Pan and Poteshman (2006)’s put-call ratio. The second is the

implied volatility spread by Cremers and Weinbaum (2010).

Using unique data and methodology, Pan and Poteshman (2006) construct put-call ratio from

option volume initiated by buyers who open new positions (volume-based put-call ratio). They

find that stocks with low put-call ratio outperform stocks with high put-call ratio by more than 40

basis points on the next day and more than 1% over the next week. We build on these findings

using information available in the OptionMetrics data. It is not possible within OptionMetrics to

distinguish the opening of new positions from the closing of old positions or market making activities

that zero out. Therefore, we use changes in open interest to construct the put-call ratio. This

approach reduces the noise in constructing an informative volume-based put-call ratio because open

interest changes more closely reflect position initiations than trading volume changes.15 Specifically,

we calculate the put-call ratio as the aggregate open interest of put options divided by the sum of

the aggregate open interest of put and call options, PC RATIO = P/(C +P ). Changes in the put-

call ratio (∆PC RATIO) are taken as the difference between PC RATIO on day t and PC RATIO

on day t-1.

Cremers and Weinbaum (2010) construct an implied volatility spread measure that captures

the difference between call and put implied volatilities for call and put options with the same strike

price and maturity. They find that stocks with relatively expensive calls outperform stocks with

relatively expensive puts by 50 basis points per week. We follow their methodology and aggregate

the information at the stock level using the average call and put open-interest as the weight. While

they focus on weekly aggregates, we construct daily spread measures. We denote the measure as

IVS.

To examine the relation between ambiguity, option information measures (OPTINFO), and

return predictability, we estimate the following specification:

DGTWRETj,t+1:t+k = α+ β1 ·AMBGj,t + β2 · RISKj,t + β3 ·OPTINFOj,t + (5)

β4 ·OPTINFOj,t ×AMBGj,t + β5 ·OPTINFOj,t × RISKj,t +

Γ · CONTROLSj,t + θt + ϵj,t,

where the dependent variable DGTWRET is the DGTW-adjusted cumulative stock returns of

15Indeed, when we repeats the analysis conducted in this subsection using volume-based put-call ratio (instead of
open-interest based), we find a negative but weak relation between the volume-based put-call ratio and subsequent
stock returns, which amounts to -2 basis points after 10 trading days. We report these findings in Table B.7 for
reference.
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firm j from day t+1 to t+10 (Daniel et al., 1997), and OPTINFO is either trading day t’s changes

in put-call open interest ratio (∆PC RATIO) or trading day t’s implied volatility spread (IVS ). For

example, in the case of ∆PC RATIO, this specification regresses returns on ∆PC RATIO, ambigu-

ity (AMBG), risk (RISK ), and the interactions ∆PC RATIO×AMBG and ∆PC RATIO×RISK.

We estimate specifications that consider next-day DGTW returns, and cumulative returns at five-

day and ten-day horizons.

Given conventional practice, we include date fixed effects but exclude firm fixed effects from the

return based analysis. Results including firm fixed effects are reported in Table B.8. We double

cluster standard errors by firm and calendar date to account for serial correlation and correlation

within overlapping multiperiod return windows.

Our empirical tests build up to this full specification that include all interaction terms. We start

with regressing DGTW returns on RISK and AMBG and the option information measures. This

specification provide an estimate of the benchmark relation between RISK, AMBG and future

stock returns and gives an empirical validation that Pan and Poteshman (2006) and Cremers

and Weinbaum (2010) finding holds within our sample, measurement strategy and specification.

We then sequentially include the interactions ∆PC RATIO×AMBG and ∆PC RATIO×RISK.

These specifications allow us to quantify the importance of AMBG and RISK in moderating the

informativeness of options trading for stock market returns.

[ Table 5 ]

The findings from estimating Equation (5) with ∆PC RATIO are reported in Panel A of Ta-

ble 5. To allow for a natural interpretation of the cumulative returns, we present these returns in

percentage point units. However, ∆PC RATIO, RISK, and AMBG are all presented in standard-

ized units. Thus, the coefficient estimates for the main effects in the table are a percentage point

change in DGTW-adjusted returns for a standard deviation increase in the variable of interest.

Our base specifications (Columns 1, 4, and 7) imply that AMBG exhibit weak stock market

predictability. At the one-day horizon, a standard deviation in AMBG is associated with an

increase of only 0.5 basis points, which is economically small. The stock return predictability

increases somewhat at longer holding periods. For five-day returns, a standard deviation increase

in AMBG is associated with returns increasing by 1.6 basis points. For ten-day returns, a standard

deviation increase in AMBG is associated with an increase of 2.3 basis points. Though small in

magnitude, these findings can be consistent with a risk-based explanation, where AMBG command

22



a premium in the cross-section of stock returns. The results for RISK across the different horizons

are mixed consistent with prior evidence.

We also find a strong relation between ∆PC RATIO and subsequent stock returns, consistent

with Pan and Poteshman’s (2006) findings. A standard deviation increase in ∆PC RATIO is

associated with roughly 31 to 36 basis points increase of DGTW-adjusted return over the next

one to ten trading days. Despite the noise in using OptionMetrics data, we obtain an estimated

magnitude that is comparable with Pan and Poteshman’s (2006) estimates of 40 basis points for

next day return, though smaller than their finding of 100 basis points over a similar horizon.16

Moreover, in our specification, most of the return predictability occurs on date t + 1 with non-

significant returns related to the put-call ratio in future periods. Panel A of Figure 5 illustrates

the return patterns over time.

[ Figure 5 ]

Next, in Columns 2, 5 and 8, we consider the interaction between AMBG and ∆PC RATIO.

Consistent with AMBG being an important factor for participation and trading, we find that

AMBG has a positive and significant interaction with ∆PC RATIO. In particular, a standard

deviation increase in AMBG is associated with a reduction in the informativeness of ∆PC RATIO

for stock returns by 3.4 to 4.6 basis points for the one to ten day horizon. The effect amounts to

approximately 12.8% of ∆PC RATIO main effect. Including the interaction with RISK (Columns

3, 6, and 9) slightly reduces this effect. By comparison to this interaction with AMBG, we find that

the interaction effect of RISK is only around 4.2% of ∆PC RATIO main effect. The magnitude

of the interactive effect for AMBG is stronger than ambiguity’s main effect; particularly, at the

one-day horizon − in Column 3, the main effect of AMBG is 0.5 basis points, whereas its interaction

with ∆PC RATIO is 3.4 basis points. The main effect of AMBG is similar whether we include

the interaction in the specification or not. Thus, this interactive effect is unlikely to reflect any

direct effect of AMBG on stock return predictability. Taken together, these findings suggest that

ambiguity leads to a reduction in option trading informativeness for stock market returns.17

16We consider standard deviation changes in our specification, whereas Pan and Poteshman’s (2006) result corre-
sponds to a long-short quintile approach. A standard deviation change is consistent with a movement from the 16th
percentile to the 84th percentile of a normal distribution. Thus, our estimated magnitudes are roughly comparable
to the quintile approach.

17The dynamic nature of the main effect of AMBG versus the interactive effect also supports this interpretation.
Notably, the interactive effect is immediately seen in the one-day returns with a slightly larger magnitude by day 10.
This contrasts with the main effect, which is very small at the one-day horizon but gradually emerges over the 10-day
window. The immediate nature of the interactive effect more closely resembles the main effect of ∆PC RATIO, which
is linked only to trading in options markets.
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Next, in Panel B of Table 5 we report the results using Cremers and Weinbaum (2010)’s mea-

sure. Columns 1, 4, and 7 confirm the positive return predictability of IVS in the cross-section of

stock returns. Specifically, a on standard deviation increase in IVS is associated with 6.2 to 8.3

basis points. We use daily measures, while Cremers and Weinbaum (2010) use weekly aggregates.

Multiplying the coefficient estimates by 5 provides comparable magnitudes to those reported in

Cremers and Weinbaum (2010).

Columns 2, 5, and 8 further indicate that AMBG has a negative and significant interaction

with IVS. In particular, a standard deviation increase in AMBG is associated with a reduction

in the informativeness of IVS for stock returns by 0.7 to 2.7 basis points for the one to ten day

horizon. The effect amounts to approximately 37% of IVS main effect. Interestingly, including the

interaction with RISK (Columns 3, 6, and 9) attenuates this effect, where it amounts to 23%. The

interaction effect of RISK seem more important in the case of IVS then ∆PC RATIO, where the

effect of RISK amounts to 37.7% at the ten day horizon.

Overall, Table 5 indicates that AMBG play an important and consistent role in shaping how

information flows from the options to the stock market. In particular, an increase in AMBG results

in lower informativeness of stock prices.

4.2 Option returns

Establishing the importance of AMBG for return predictability, we turn to examine how AMBG

relates to option returns. Given the sensitivity of options to the underlying asset, we follow the

convention of reporting results based on delta-hedged returns. In particular, we calculate the

options’ end of day prices based on the midpoint between the end of day best bid and best ask

quotes (OptionPRCt). The option’s daily delta-hedged return is then calculated as [(OptionPRCt−

OptionPRCt−1)−∆t−1(StockPRCt−StockPRCt−1)]/OptionPRCt−1. To aggregate options at the

firm level, we form value-weighted portfolios using day t-1 open interest dollar value as the weight,

separately for puts versus calls. We fix day t − 1 open interest dollar value to allow for a natural

buy and hold interpretation.

To estimate the impact of AMBG on options returns, we estimate the following specification:

CumulativeReturnsj,t:t+k = α+ β ·AMBGj,t + γ · RISKj,t + Γ · CONTROLSj,t + θt + ϵj,t, (6)

where the dependent variable Cumulative Returnsj,t:t+k is either the delta-hedged cumulative re-

turns on call options (value weighted) from date t to t + k, or the analogous cumulative returns
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term for put options. To analyze dynamics in the returns, we estimate this specification separately

for dates t to t + 5. We employ the same controls as in the open interest and trading volume

regressions. As in Table 5 we exclude the firm fixed effects. We also double cluster by calendar

date and firm, which accounts flexibly for serial correlation (e.g., overlapping return windows).

[ Table 6 ]

The findings from estimating Equation (6) are reported in Table 6. The results including firm

fixed effects are reported in Table B.9. To allow for a natural interpretation of the cumulative

returns, we present the dependent variable in percentage units, as we did for stock returns. RISK

exhibits a positive relation to both the call and put option returns, as expected from a classic

option pricing perspective (e.g., Black and Scholes, 1973). At date t, a standard deviation increase

in RISK is associated with 31.1 (31.4) basis points increase in call (put) option return, and by the

end of day t+5 RISK is associated with 65.2 (68) basis points increase in call (put) option return.18

In contrast to RISK, AMBG is negatively related to delta-hedged option returns with an es-

timated magnitude that is sizeable relative to the estimated magnitude for RISK. On day t, a

standard deviation increase in AMBG is associated with 13.8 (18.5) basis points reduction in call

(put) option returns. After five days AMBG is associated with 18.5 (36) basis points reduction in

call (put) option return. Panels B and C of Figure 5 present plots of the dynamics of the delta-

hedged return effects. For both AMBG and RISK, most of the return is accrued on the first few

days, quickly converging to no additional effect.

Viewed at a high level, these findings on option returns provide a complementary perspective

on the results on participation and trading in options markets. Our findings suggest that high

ambiguity reduces options trading, while also decreasing option returns. From an economic per-

spective, given that options are a zero sum game, these findings jointly point to the interpretation

that the option is less desirable when AMBG increases, which is a natural consequence of height-

ened ambiguity. Theoretically, though taking different approaches to model decision-making under

ambiguity (e.g., Gilboa and Schmeidler, 1989; Schmeidler, 1989; Wakker and Tversky, 1993), a

joint concept of these models is that, in the presence of ambiguity, ambiguity-averse investors act

as if they overweight the probabilities of unfavorable outcomes and underweight the probabilities

18Notably, Cao and Han (2013) document a negative relation between risk and option returns. Importantly, they
look at a monthly RISK measure and predict the options return over the subsequent month. Consistent with these
findings in Table B.10 we report the coefficient estimates of RISK and AMBG based on their 21-day rolling averages,
and recover a negative relation between AvgRISK and subsequent options returns.The effect is much smaller than
the contemptuous effect of RISK on options returns.
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of favorable outcomes. All else equal, such a weighting lowers the perceived expected value of the

option for both buyers and writers.

5 Robustness and extensions

In this section, we present robustness and extensions to the main findings on options trading and

returns.

5.1 AMBG and stock options bid-ask spread

First, we consider the relation on AMBG to options liquidity, measured by the options’ bid-ask

spread. One possible mechanism that could explain the findings is that periods of high ambiguity

correspond with greater illiquidity, which discourages trading in the options market. To evaluate

this possibility, we estimate how the options’ bid-ask spread depends on AMBG and RISK in a

panel regression of the same structure as Equation (2), but with the bid-ask spread as the dependent

variable. To this end, we use the options’ end of day percentage bid-ask spread (relative to the

midpoint, BAS ).

[ Table 7 ]

Table 7 reports the finding from estimating this specification. For both put and call options, we

obtain a small and non-significant estimated coefficient on AMBG as of date t. On subsequent days,

the coefficient estimate on AMBG increases, and becomes statistically significant while remaining

relatively small. These findings are inconsistent with liquidity effects driving the differences in

trading volume. In fact, the response of trading volume to ambiguity may, in part, be responsible

for the non-significant result as of date t. As both writers and buyers of the contracts have a mutual

incentive to the reduce (close) their positions as ambiguity rises, open interest reduces while liquidity

remains constant. In contrast, during subsequent days AMBG has a positive effect on the BAS

as the spreads widen.19 This finding is consistent with the view portrayed by our options returns

results: as ambiguity rises, writers require a higher premium due to a lower perceived expected

payoff, while at the same time, buyers offer a lower price for the same reason. Widening spreads is

a natural consequence of these market conditions (e.g., Glosten and Milgrom, 1985).

The findings for RISK contrast with our main findings on AMBG. For call options, RISK

exhibits a positive relation to the BAS on day t and the subsequent trading days, where the effect

attenuates over time. For put options, we find a similar pattern, which is slightly weaker relative

19We confirm this finding in a set of unreported findings showing a decrease in the BAS on day t for out-of-the-
money options and options with a short maturity. In contrast, we find an increase in BAS for the other options.
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to the call options. The positive relation of risk to bid-ask spread (negative effect on liquidity) is

also expected and consistent with prior evidence (e.g., Hameed et al., 2010).

5.2 Options trading around news days

In this section, we consider whether the options market participation and trading effects we observe

in our main tests also hold around notable firm-specific news events when information comes out

about the underlying security. To this end, we repeat the analysis for days t and t+5 around firm

earnings announcement days, and unscheduled news disclosures (proxied by 8-K filing days).

[ Table 8 ]

Panel A of Table 8 presents the findings on open interest while Panel B presents the findings on

options trading volume. Interestingly, we find a consistent amplification of the AMBG coefficient

estimate for unscheduled news (8-K disclosure dates) for both open interest and trading volume.

A standard deviation increase in AMBG, implies a reduction in open interest of 0.017 standard

deviations (for both calls and puts). This is notably stronger coefficient estimate than the estimates

from the main table, which range form -0.012 to -0.015. The trading volume analysis imply a

proportionate amplification of the AMBG coefficient estimates. For earnings announcement days,

we see a weakening of the relation between AMBG and call option open interest, but a strengthening

of the relation of AMBG and put option open interest.

At a high level, the findings from Table 8 imply that the negative relation between ambiguity

and options trading is present on identifiable firm news days, implying that public information

arrival does not render insignificant the effects of AMBG in options markets.

5.3 Subsample analysis by firm size and time period

In this subsection, we repeat our main analysis for subsamples by firm size and subperiods. To

conduct the analysis by firm size, we classify firms into tercile subsamples by their market capital-

ization, and establish dummy variables accordingly. We then interact these dummy variables with

AMBG and RISK, analogous to the heterogeneity specification in Equation (4).

Table B.11 in Appendix B reports the findings. Panel A of reveals an interesting difference

between AMBG and RISK. In particular, the effect of RISK on options open interest is more

significant for larger firms (3rd tercile). In contrast, the effect of AMBG is uniformly present across

all terciles. Turning to the effect of AMBG and RISK on options trading volume, Panel B reveals

that the effect of both AMBG and RISK on trading volume is stronger for larger firms.
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Next, we explore whether different time periods affect investors’ reaction to ambiguity and risk.

We divide our sample into three equal-length subperiods: 2002-2006, 2007-2012, and 2013-2018.

Similar to the firm-size heterogeneity, we define dummy variables for each subperiod, and estimate

a specification that interacts AMBG and RISK with these indicator variables.

Table B.12 in Appendix B reports the findings. Similar to the findings reported in Table B.11,

AMBG presents consistent coefficient estimates across the three subperiods for both options open

interest (Panel A) and options trading volume (Panel B). RISK also presents consistent coeffi-

cient estimates, except for call options open interest where the coefficients change sign across the

subperiods.

5.4 Uncertainty factors, dispersion in analyst forecasts and market conditions

In this section, we explore the robustness of our main findings, reported in Tables 3, 4 and 6, by

extending our empirical investigation in several ways. First, we explore how the AMBG coefficient

estimates change when we exclude RISK or when we include RISK together with other uncertainty

proxies. These proxies include skewness (SKEW ), kurtosis (KURT ), the volatility-of-mean returns

(VOM ), and the volatility-of-volatility of returns (VOV ). Second, VOM and VOV and dispersion

of analyst forecasts (DAF ) are often used as proxies for ambiguity. Thus, we contrast AMBG with

VOV, VOM, and DAF and explore their directional predictions and economic significance.20 Third,

to differentiate firm-specific shocks in AMBG from any market-wide shocks in risk or ambiguity, we

include the changes in market volatility (∆VIX ) and changes in market ambiguity (∆MktAMBG)

as additional control variables in our regression specifications. Importantly, across all the tests, our

AMBG estimates remain intact.

We start by including all other uncertainty factors in our regressions test, alongside AMBG

and RISK. Table B.13 in Appendix B reports the findings. Specifically, we report findings for open

interest (Panel A), trading volume (Panel B), and cumulative delta-hedged returns (Panel C). To

ease the comparison, in all the tests we include the “Base” findings from our main tables. Across all

panels and specifications, the findings indicate that excluding all uncertainty proxies or including

all of them does not alter our findings with respect to AMBG. These findings are consistent with

20Our measure of ambiguity ℧2 is broader than VOM and VOV as it accounts for both, as well as for the volatility of
all higher moments of the probability distribution (e.g., skewness and kurtosis) through the variance of probabilities.
Furthermore, ℧2 solves some major issues that arise from the use of only the volatility-of-mean or the volatility-of-
volatility as proxies for ambiguity. For example, two securities could have a constant mean, but different degrees of
ambiguity, or two securities could have constant volatility but different degrees of ambiguity. Second, as opposed to
the volatility-of-mean, volatility-of-volatility, and dispersion of analyst forecasts, the measure ℧2 is outcome and risk
independent, as it does not depend upon the magnitudes of outcomes, but only upon their probabilities.
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the fact that all these uncertainty factors do not explain more than 9% of the variation in AMBG

(Panel C of Table 2). They are also consistent with the fact that all the other uncertainty factors

are outcome dependent and therefore risk dependent, while ambiguity is outcome independent.

Next, we contrast AMBG with VOM and VOV, where we replace RISK with VOM and VOV.

The findings of these tests are reported in Table B.14 in Appendix B. Similar to Table B.13, we

report findings for open interest (Panel A), trading volume (Panel B), and cumulative delta-hedged

returns (Panel C). Given our previous findings, it is not surprising that controlling for VOV or

VOM does not alter our AMBG coefficient estimates. Since VOM and VOV are often used as

proxies for ambiguity, the directional relation and economic significance of VOM and VOV is of

interest. Starting with VOM, we find that across all panels VOM coefficient estimates are in the

opposite sign of AMBG and consistent with the predictions of RISK. The economic magnitude is

also comparable to AMBG. The finding of VOV are also consistent with those of RISK, except for

open interest, where VOV shows a negative relation. However, the economic significance is very

small compared to AMBG. Overall, the findings in Table B.14 demonstrate that the effect of VOM

and VOV is qualitatively similar to that of RISK. This is not surprising given that Panel B of

Table 2 reveals that the correlations of VOM and VOV with RISK are very high.

Next, we contrast AMBG with DAF. Table B.15 in Appendix B reports the fidings. Notably,

the correlation between AMBG and DAF is virtually zero as reported in Panel B of Table 2. Thus,

it is not surprising that controlling for DAF does not alter our findings regarding AMBG. What is

striking is that higher dispersion in analyst forecasts (updated at a monthly frequency) predicts an

increase in open interest and an increase in trading volume. This positive relation is inconsistent

with DAF ’s interpretation as an ambiguity measure. However, it is consistent with DAF being a

measure of difference-of-opinions or disagreement across analysts. If analyst disagreement correlates

with overall disagreement, this is consistent with Cookson and Niessner (2020) who find that higher

disagreement is associated with higher trading volume. Moreover, in the options setting, higher

disagreement is also associated with more contracts being opened. Finally, in contrast to the

findings of AMBG and RISK, DAF has no prediction power for option returns.

In our last set of tests, we explore the robustness of our findings to the inclusion of market risk

and market ambiguity. We use the VIX as market risk measure, and the ambiguity of the S&P500

index as market ambiguity measure. To capture shocks in these variables, we use the changes in

VIX (∆VIX ) and changes in MktAMBG(∆MktAMBG). Since these variables are constructed at

the daily level, we replace the day fixed effects with day-of-the-week fixed effects. Overall, the
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AMBG coefficient estimates are similar to those reported in our main tables. The only exception is

the effect on the delta-hedge returns, where the magnitudes seem to be larger for both AMBG and

RISK. Finally, changes in MktAMBG have no significant effect on options open interest, trading

volume, or option returns. And, changes in market volatility have a consistent and significant

sizeable effect only for option returns.

6 Conclusion

Ambiguity has long been recognized as a theoretical mechanism that can lead to non-participation

in financial markets and inertia that inhibits trading (e.g., Easley and O’Hara, 2009; Illeditsch,

2011; Illeditsch et al., 2020). However, to date, empirical support for these theoretical consequences

of ambiguity is sparse. This paper fills this important gap between theory and empirics. Specif-

ically, we employ a newly developed daily measure of firm-level ambiguity and options market

outcomes to show that both non-participation and inertia are empirically important outcomes of

ambiguity. Beyond showing empirical support for these classic mechanisms, our findings highlight

the ambiguity’s importance for trading decisions by relatively sophisticated traders who inhabit

options markets.

The reduction in options trading due to ambiguity also tends to reduce the informativeness

of options trading (Pan and Poteshman, 2006), which is an important downstream implication of

ambiguity’s limited participation and inertia effects. Further, we note that greater ambiguity tends

to lead to negative and non-reverting delta-hedged option returns for both puts and calls. These

option return effects are of comparable economic magnitude to the impact of volatility on options

returns. Given the central role volatility plays in options pricing (e.g., Black and Scholes, 1973),

our findings suggest that ambiguity ought to also be considered in the pricing of options, given the

striking economic magnitudes we find.

A consistent feature of our findings is that the estimated impacts of ambiguity are distinct

from those of risk with comparable economic magnitudes. Given this quantitative importance of

ambiguity for trading decisions, we anticipate that future work on ambiguity’s effects the trading

environment will continue to be fruitful. As recent work by Giglio et al. (2021) has articulated,

there are many open questions in how investors update their beliefs and trade upon existing belief

differences. Since ambiguity impedes acting upon one’s beliefs, the linkages between ambiguity,

beliefs, and trading decisions is a natural path forward for future research.
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Figure 1: Impulse response functions of call and put open interest

This figure plots the impulse responses of call and put open interest to a one-standard-deviation shock to AMBG
and RISK. For each call and put open interest (OI), it estimates a daily vector autoregression (VAR) system of OI,
AMBG, and RISK, with five lags of each variable. All variables are defined in Table B.1, where AMBG, RISK, and
OI are trimmed at the top and bottom 0.1% of their sample distribution. All regression tests include the full set
of firm control variables together with firm fixed effects and date fixed effects. The VAR system takes the following
form

OIj,t = α1 +

5∑
i=1

β1,i ·AMBGj,t−i +

5∑
i=1

γ1,i ·RISKj,t−i +

5∑
i=1

δ1,i ·OIj,t−i + Γ · CONTROLSj,t + ηj + θt + ϵ1,j,t;

AMBGj,t = α2 +

5∑
i=1

β2,i ·AMBGj,t−i +

5∑
i=1

γ2,i ·RISKj,t−i +

5∑
i=1

δ2,i ·OIj,t−i + Γ · CONTROLSj,t + ηj + θt + ϵ2,j,t;

RISKj,t = α3 +

5∑
i=1

β3,i ·AMBGj,t−i +

5∑
i=1

γ3,i ·RISKj,t−i +

5∑
i=1

δ3,i ·OIj,t−i + Γ · CONTROLSj,t + ηj + θt + ϵ3,j,t.

The estimated coefficients of this system are reported in Table B.2. This figure includes two pairs of graphs, one for AMBG
and one for RISKEach pair plots the cumulative response of DEP to a one-standard-deviation shock to AMBG (upper graphs)
and to RISK (lower graph). To estimate the effect of AMBG (RISK ) on DEP, the Cholesky order is set to be RISK, AMBG,
DEP (AMBG, RISK, DEP). Each graph depicts the response in the subsequent 0, . . . , 90 trading days, listed on the x-axis.
The solid line depicts the variable response and the dashed gray lines depict the 95% confidence intervals.
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Figure 2: Impulse Response Functions of call and put trading volume

This figure plots the impulse responses of call and put trading volume to a one-standard-deviation shock to AMBG
and RISK. For each call and put trading volume (V OL), it estimates a daily vector autoregression (VAR) system
of V OL, AMBG, and RISK, with five lags of each variable. All variables are defined in Table B.1, where AMBG,
RISK, and V OL are trimmed at the top and bottom 0.1% of their sample distribution. All regression tests include
the full set of firm control variables together with firm fixed effects and date fixed effects. The VAR system takes the
following form

V OLj,t = α1 +

5∑
i=1

β1,i ·AMBGj,t−i +

5∑
i=1

γ1,i ·RISKj,t−i +

5∑
i=1

δ1,i · V OLj,t−i + Γ · CONTROLSj,t + ηj + θt + ϵ1,j,t;

AMBGj,t = α2 +

5∑
i=1

β2,i ·AMBGj,t−i +

5∑
i=1

γ2,i ·RISKj,t−i +

5∑
i=1

δ2,i · V OLj,t−i + Γ · CONTROLSj,t + ηj + θt + ϵ2,j,t;

RISKj,t = α3 +

5∑
i=1

β3,i ·AMBGj,t−i +

5∑
i=1

γ3,i ·RISKj,t−i +

5∑
i=1

δ3,i · V OLj,t−i + Γ · CONTROLSj,t + ηj + θt + ϵ3,j,t.

The estimated coefficients of this system are reported in Table B.2. This figure includes two pairs of graphs, one for AMBG
and one for RISKEach pair plots the cumulative response of DEP to a one-standard-deviation shock to AMBG (upper graphs)
and to RISK (lower graph). To estimate the effect of AMBG (RISK ) on DEP, the Cholesky order is set to be RISK, AMBG,
DEP (AMBG, RISK, DEP). Each graph depicts the response in the subsequent 0, . . . , 90 trading days, listed on the x-axis.
The solid line depicts the variable response and the dashed gray lines depict the 95% confidence intervals.
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Figure 3: The effect of AMBG and RISK on options’ open interest and trading volume based on moneyness

This figure plots the coefficient estimates of AMBG and RISK from daily panel regressions, in which call and put
stock option open interest or trading volume on trading day t, . . . , t + 5 are regressed on trading day t’s ambiguity
(AMBG), risk (RISK ), and other firm characteristics based on moneyness. In particular, for each firm and day we
aggregate options open interest (Graphs A-B) or trading volume (Graphs C- D) based on contract moneyness. The
moneyness groups are defined as 0.1 <= |∆| <= 0.40, 0.40 < |∆| < 0.60, and 0.60 < |∆| <= 0.90, respectively.
To estimate the coefficients we stack each firm daily measures in the same regression and interact AMBG and RISK
with dummy variables based on the three defined moneyness groups.The regression results are reported in Table B.3.
The graphs below plot the regressions’ coefficient estimates of open interest (trading volume) from trading day t+5
(t) together with their 95% confidence intervals.
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Figure 4: The effect of AMBG and RISK on options’ open interest and trading volume based on maturity

This figure plots the coefficient estimates of AMBG and RISK from daily panel regressions, in which call and put
stock option open interest or trading volume on trading day t, . . . , t + 5 are regressed on trading day t’s ambiguity
(AMBG), risk (RISK ), and other firm characteristics based on maturity. In particular, for each firm and day we
aggregate options open interest (Graphs A-B) or trading volume (Graphs C-D) based on contract maturity. The
maturity groups are defined as Maturity <= 3 months, 3 < Maturity <= 6 months, and 6 < Maturity <= 12
months, respectively. To estimate the coefficients we stack each firm daily measures in the same regression and
interact AMBG and RISK with dummy variables based on the three defined maturity groups.The regression results
are reported in Table B.4. The graphs below plot the regressions’ coefficient estimates of open interest (trading
volume) from trading day t+5 (t) together with their 95% confidence intervals.
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Figure 5: The dynamics of non-cumulative daily stock and option returns

This figure plots coefficient estimates of ∆PC RATIO based on Equation (5) (Panel A) and the coefficient estimates
of AMBG and RISK based on Equation (6) (Panels B and C) using non-cumulative daily returns. Panel A plots
results from daily DGTW adjusted stock returns from day t+1 to t+10 together with their 95% confidence intervals.
Similarly, Panels B and C plot results from daily delta-hedged option returns from day t to t+10. In all panels the
focal date is day t.
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Table 1: Summary statistics

This table reports the summary statistics of the variables employed in the statistical analysis. All variables are
defined in Table B.1. All panels reports the sample’s mean Std. Dev. and median together with the number of
firm-day observations. Panel A reports the statistics of the main stock variables. For ease of presentation, AMBG
and RISK are multiplied by 10,000, VOV is multiplied by 1 million, and VOM, stock turnover (SVOL), and CumRet
are multiplied by 100. Panel B reports statistics regarding the number of unique call and put option contracts and
the trading variables of interest. All variables are trimmed at the top and bottom 0.1% of their sample distribution.
The sample period is from January 2002 to December 2018. The options trading data is taken from OptionMetrics.

Panel A: Main stock variables

Mean Std. Dev. Median Obs.

AMBG 60.615 84.185 32.202 6,766,488
RISK 9.897 9.242 6.951 6,766,488
VOV 1.399 2.389 0.520 6,766,488
VOM 1.921 2.000 1.270 6,766,488
DAF 0.068 0.463 0.020 6,766,488
SKEW -0.002 0.281 -0.002 6,766,488
KURT 4.834 0.941 4.745 6,766,488
Size in Millions 8408.142 26830.731 1899.955 6,766,488
Book-to-Market 0.536 0.515 0.426 6,766,488
Number of Analysts 10.524 6.869 9.000 6,762,750
InstHold 0.692 0.201 0.727 6,412,098
SVOL 1.193 1.669 0.805 6,766,488
ES 0.318 2.117 0.096 6,766,488

1
AvePrc

0.047 0.039 0.034 6,766,488
CumRet 1.386 12.946 1.097 6,766,488

Panel B: Main option variables

Mean Std. Dev. Median Obs.

# Call Options 15.302 20.829 9.000 6,128,675
# Put Options 15.551 21.236 9.000 6,050,752
COI 0.794 1.644 0.290 6,123,752
POI 0.656 1.616 0.194 6,045,825
CVOL 0.050 0.205 0.005 6,124,603
PVOL 0.036 0.169 0.002 6,046,688
CBAS 14.054 10.233 11.275 4,738,569
PBAS 13.020 9.809 10.258 4,081,344
CRET -0.349 7.686 -0.490 6,112,183
PRET -0.338 7.480 -0.409 6,032,070
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Table 2: Correlations

This table reports the sample correlations between AMBG and other variables of interest. The sample period is
from January 2002 to December 2018.All variables are defined in Table B.1. Panel A reports the correlation matrix
between AMBG, RISK, and the main variables of interest. Panel B reports the correlation matrix between AMBG,
RISK, and other uncertainty variables. Finally, Panel C reports the partial correlations from daily panel regressions
of AMBG on other uncertainty proxies. To capture within firm variation the variables in all panels are de-meaned.
Consequently, the AdjR2 in Panel C captures the variance explained by the independent variables. Standard errors
are double clustered by firm and date, and t-statistics are reported in parentheses below the coefficient estimates.
Statistical significance at the 10%, 5%, and 1% level is indicated by *, **, and ***, respectively.All variables are
defined in Table B.1. All variables are trimmed at the top and bottom 0.1% of their sample distribution. The sample
period is from January 2002 to December 2018. The institutional investors’ net trading data is from January 2002 to
December 2015, taken from ANcerno. The options trading data is taken from OptionMetrics.

Panel A: Main variables

(1) (2) (3) (4) (5) (6) (7)

(1) AMBG 1.00
(2) RISK -0.28 1.00
(3) COI -0.00 -0.02 1.00
(4) POI -0.03 0.03 0.65 1.00
(5) CVOL -0.02 0.03 0.40 0.29 1.00
(6) PVOL -0.03 0.04 0.29 0.36 0.56 1.00
(7) SVOL -0.05 0.11 0.18 0.18 0.46 0.40 1.00

Panel B: Ambiguity and other uncertainty factors - univariate

(1) (2) (3) (4) (5) (6) (7)

(1) AMBG 1.00
(2) RISK -0.28 1.00
(3) VOM -0.18 0.71 1.00
(4) VOV -0.08 0.57 0.40 1.00
(5) SKEW -0.01 0.01 0.00 0.00 1.00
(6) KURT 0.16 -0.40 -0.29 -0.18 -0.00 1.00
(7) DAF -0.01 0.02 0.01 -0.00 -0.00 -0.03 1.00

Panel C: Ambiguity and other uncertainty factors - multivariate

(1) (2) (3) (4) (5) (6)
t t t t t t

RISK -2.979∗∗∗ -3.677∗∗∗ -3.258∗∗∗ -3.961∗∗∗ -3.735∗∗∗ -3.735∗∗∗

(-50.22) (-50.05) (-60.95) (-59.34) (-49.35) (-49.34)

VOV 4.046∗∗∗ 4.051∗∗∗ 3.919∗∗∗ 3.921∗∗∗

(43.40) (43.70) (40.17) (40.17)

VOM 1.591∗∗∗ 1.616∗∗∗ 1.658∗∗∗ 1.658∗∗∗

(14.69) (14.49) (14.66) (14.66)

SKEW -1.997∗∗∗ -1.997∗∗∗

(-9.46) (-9.46)

KURT 4.093∗∗∗ 4.097∗∗∗

(10.94) (10.96)

DAF 0.427
(1.17)

Firm FEs YES YES YES YES YES YES
Firm Cluster YES YES YES YES YES YES
Day Cluster YES YES YES YES YES YES

Observations 6,766,486 6,766,486 6,766,486 6,766,486 6,766,486 6,766,486
AdjR2 0.077 0.085 0.077 0.086 0.088 0.08841



Table 3: Call and put options’ open interest

This table reports the findings from daily panel regressions, in which call and put stock option open interest on trading
day t, . . . , t+5 are regressed on trading day t’s ambiguity (AMBG), risk (RISK ), and other firm characteristics. Call
and put open interest measures are reported in Panel A and B, respectively. The regressions with the full set of
controls are reported in Table B.5. The sample period is from January 2002 to December 2018. The options trading
data is taken from OptionMetrics. All variables are defined in Table B.1. All specifications include the trailing
avergaes of the dependent variable (AvgDEP), AMBG(AvgAMBG) and RISK (AvgRISK ). This allows to account
for the persistence in the dependent variables, and explore the effect of changes in AMBG and RISK relative to
their trailing benchmarks. (Z) stands for a Z-Score adjustment. Firm and date fixed effects are included in each
specification. Standard errors are double clustered by firm and date, and t-statistics are reported in parentheses
below the coefficient estimates. Statistical significance at the 10%, 5%, and 1% level is indicated by *, **, and ***,
respectively.

Panel A: Call open interest

COI(Z)

(1) (2) (3) (4) (5)
t t+1 t+2 t+3 t+5

AMBG(Z) -0.012∗∗∗ -0.012∗∗∗ -0.013∗∗∗ -0.013∗∗∗ -0.014∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00)

RISK(Z) -0.004∗∗∗ -0.003∗∗ -0.001 -0.001 -0.000
(0.00) (0.00) (0.00) (0.00) (0.00)

Controls YES YES YES YES YES
Firm FEs YES YES YES YES YES
Date FEs YES YES YES YES YES

Observations 5,871,968 5,872,005 5,872,150 5,872,179 5,872,223
AdjR2 0.837 0.837 0.840 0.839 0.839

Panel B: Put open interest

POI(Z)

(1) (2) (3) (4) (5)
t t+1 t+2 t+3 t+5

AMBG(Z) -0.014∗∗∗ -0.014∗∗∗ -0.014∗∗∗ -0.014∗∗∗ -0.015∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00)

RISK(Z) 0.015∗∗∗ 0.016∗∗∗ 0.017∗∗∗ 0.017∗∗∗ 0.017∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00)

Controls YES YES YES YES YES
Firm FEs YES YES YES YES YES
Date FEs YES YES YES YES YES

Observations 5,791,506 5,791,552 5,791,681 5,791,760 5,791,788
AdjR2 0.846 0.846 0.848 0.847 0.845
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Table 4: Call and put options’ trading volume

This table reports the findings from daily panel regressions, in which stock option trading volume measures on trading
day t, . . . , t+5 are regressed on trading day t’s ambiguity (AMBG), risk (RISK ), and other firm characteristics. Call
and put trading volume measures are reported in Panels A and B, respectively. The regressions with the full set of
controls are reported in Table B.6. The sample period is from January 2002 to December 2018. The options trading
data is taken from OptionMetrics. All variables are defined in Table B.1. All specifications include the trailing
avergaes of the dependent variable (AvgDEP), AMBG(AvgAMBG) and RISK (AvgRISK ). This allows to account
for the persistence in the dependent variables, and explore the effect of changes in AMBG and RISK relative to
their trailing benchmarks. Firm and date fixed effects are included in each specification. (Z) stands for a Z-Score
adjustment. Standard errors are double clustered by firm and date, and t-statistics are reported in parentheses
below the coefficient estimates. Statistical significance at the 10%, 5%, and 1% level is indicated by *, **, and ***,
respectively.

Panel A: Call trading volume

CVOL(Z)

(1) (2) (3) (4) (5)
t t+1 t+2 t+3 t+5

AMBG(Z) -0.040∗∗∗ -0.023∗∗∗ -0.018∗∗∗ -0.017∗∗∗ -0.016∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00)

RISK(Z) 0.137∗∗∗ 0.058∗∗∗ 0.033∗∗∗ 0.026∗∗∗ 0.020∗∗∗

(0.01) (0.00) (0.00) (0.00) (0.00)

Controls YES YES YES YES YES
Firm FEs YES YES YES YES YES
Date FEs YES YES YES YES YES

Observations 6,008,137 5,940,699 5,924,982 5,910,826 5,884,918
AdjR2 0.400 0.409 0.408 0.404 0.395

Panel B: Put trading volume

PVOL(Z)

(1) (2) (3) (4) (5)
t t+1 t+2 t+3 t+5

AMBG(Z) -0.039∗∗∗ -0.023∗∗∗ -0.018∗∗∗ -0.015∗∗∗ -0.013∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00)

RISK(Z) 0.132∗∗∗ 0.059∗∗∗ 0.037∗∗∗ 0.029∗∗∗ 0.024∗∗∗

(0.01) (0.00) (0.00) (0.00) (0.00)

Controls YES YES YES YES YES
Firm FEs YES YES YES YES YES
Date FEs YES YES YES YES YES

Observations 5,922,273 5,857,357 5,841,742 5,828,234 5,802,097
AdjR2 0.369 0.373 0.371 0.367 0.359
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Table 5: Option based measures and stock return predictability

This table reports the findings from daily panel regressions, in which DGTW adjusted cumulative stock returns from
trading day t+1, . . . , t+10 are regressed on trading day t’s option based measures, ambiguity (AMBG), risk (RISK ),
the interaction of these measures with AMBG and RISK controlling for other firm characteristics. In Panel A we
use the changes in put-call open interest ratio (∆PC RATIO), where ∆PC RATIO is calculated as the difference
between the open interest of P/(C+P) on day t and t-1. In panel B we use Cremers and Weinbaum (2010)’s implied
volatility spread measure (IVS), which captures the difference between call and put implied volatilities for call and
put options with the same strike price and maturity. The stock level measure is the open-interest weighted average
across all pairs. Columns 1-3, 4-6 and 7-9 report results for cumulative returns based on one, five and ten trading
days, respectively. The sample period is from January 2002 to December 2018. The options trading data is taken from
OptionMetrics. All variables are defined in Table B.1. All specifications include the trailing avergaes of the dependent
variable (AvgDEP), AMBG(AvgAMBG) and RISK (AvgRISK ). This allows to account for the persistence in the
dependent variables, and explore the effect of changes in AMBG and RISK relative to their trailing benchmarks.
(Z) stands for a Z-Score adjustment. Date fixed effects are included in each specification. Standard errors are double
clustered by firm and date, and t-statistics are reported in parentheses below the coefficient estimates. Statistical
significance at the 10%, 5%, and 1% level is indicated by *, **, and ***, respectively.

Panel A: The put-call open interest ratio

DGTWt1 DGTWt5 DGTWt10

(1) (2) (3) (4) (5) (6) (7) (8) (9)
t+1 t+1 t+1 t+1 t+5 t+1 t+5 t+1 t+5 t+1 t+10 t+1 t+10 t+1 t+10

AMBG(Z) 0.005∗∗ 0.005∗∗ 0.005∗∗ 0.016∗∗∗ 0.016∗∗∗ 0.016∗∗∗ 0.023∗∗∗ 0.022∗∗∗ 0.022∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

RISK(Z) 0.002 0.002 0.002 0.003 0.003 0.003 -0.000 -0.000 -0.000
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

∆PC RATIO(Z) -0.309∗∗∗ -0.304∗∗∗ -0.304∗∗∗ -0.352∗∗∗ -0.346∗∗∗ -0.345∗∗∗ -0.365∗∗∗ -0.358∗∗∗ -0.357∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

∆PC RATIO(Z)×AMBG(Z) 0.034∗∗∗ 0.031∗∗∗ 0.044∗∗∗ 0.036∗∗∗ 0.046∗∗∗ 0.038∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

∆PC RATIO(Z)×RISK(Z) -0.005 -0.014∗∗∗ -0.015∗∗∗

(0.00) (0.00) (0.00)

Controls YES YES YES YES YES YES YES YES YES
Firm FEs NO NO NO NO NO NO NO NO NO
Date FEs YES YES YES YES YES YES YES YES YES

Observations 5,822,503 5,822,503 5,822,503 5,820,028 5,820,028 5,820,028 5,817,898 5,817,898 5,817,898

AdjR2 0.026 0.026 0.026 0.008 0.009 0.009 0.006 0.006 0.006
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Panel B: The implied volatility spread measure

DGTWt1 DGTWt5 DGTWt10

(1) (2) (3) (4) (5) (6) (7) (8) (9)
t+1 t+1 t+1 t+1 to t+5 t+1 to t+5 t+1 to t+5 t+1 to t+10 t+1 to t+10 t+1 to t+10

AMBG(Z) 0.003 0.003 0.003 0.016∗∗∗ 0.015∗∗∗ 0.015∗∗∗ 0.021∗∗ 0.020∗∗ 0.020∗∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

RISK(Z) 0.001 0.000 0.002 0.004 0.004 0.005 -0.000 -0.001 0.002
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

IVS(Z) 0.062∗∗∗ 0.059∗∗∗ 0.053∗∗∗ 0.075∗∗∗ 0.068∗∗∗ 0.059∗∗∗ 0.083∗∗∗ 0.073∗∗∗ 0.061∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

IVS(Z)×AMBG(Z) -0.007∗∗∗ 0.000 -0.017∗∗∗ -0.007 -0.027∗∗∗ -0.014∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

IVS(Z)×RISK(Z) 0.012∗∗∗ 0.017∗∗∗ 0.023∗∗∗

(0.00) (0.00) (0.00)

Controls YES YES YES YES YES YES YES YES YES
Firm FEs NO NO NO NO NO NO NO NO NO
Date FEs YES YES YES YES YES YES YES YES YES

Observations 5,614,965 5,614,965 5,614,965 5,613,858 5,613,858 5,613,858 5,612,232 5,612,232 5,612,232

AdjR2 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003
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Table 6: Call and put options’ cumulative delta-hedged returns

This table reports the findings from daily panel regressions, in which stock option cumulative delta-hedged returns
on trading day t, . . . , t + 5 are regressed on trading day t’s ambiguity (AMBG), risk (RISK ), and other firm char-
acteristics. We calculate the options’ end of day prices based on the midpoint between the end of day best bid
and best ask quotes (OptionPRC t). Based in the prices, the option’s daily delta-hedged return is calculated as
[(OptionPRCt−OptionPRCt−1)−∆t−1(StockPRCt−StockPRCt−1)]/OptionPRCt−1. To aggregate the call or put
options at the firm level, we form value-weighted portfolios using day t-1 open interest dollar value as the weight. We
fix day t-1 open interest dollar value to allow for a natural buy and hold interpretation. The sample period is from
January 2002 to December 2018. The options trading data is taken from OptionMetrics. All variables are defined in
Table B.1. All specifications include the trailing avergaes of the dependent variable (AvgDEP), AMBG(AvgAMBG)
and RISK (AvgRISK ). This allows to account for the persistence in the dependent variables, and explore the effect
of changes in AMBG and RISK relative to their trailing benchmarks. (Z) stands for a Z-Score adjustment. Date
fixed effects are included in each specification. Standard errors are double clustered by firm and date, and t-statistics
are reported in parentheses below the coefficient estimates. Statistical significance at the 10%, 5%, and 1% level is
indicated by *, **, and ***, respectively.

CCUMRET(Z) PCUMRET(Z)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
t t+1 t+2 t+3 t+5 t t+1 t+2 t+3 t+5

AMBG(Z) -0.138∗∗∗ -0.174∗∗∗ -0.182∗∗∗ -0.184∗∗∗ -0.185∗∗∗ -0.194∗∗∗ -0.251∗∗∗ -0.292∗∗∗ -0.321∗∗∗ -0.360∗∗∗

(0.01) (0.01) (0.01) (0.01) (0.02) (0.01) (0.01) (0.01) (0.02) (0.02)

RISK(Z) 0.305∗∗∗ 0.403∗∗∗ 0.492∗∗∗ 0.542∗∗∗ 0.652∗∗∗ 0.313∗∗∗ 0.433∗∗∗ 0.513∗∗∗ 0.577∗∗∗ 0.680∗∗∗

(0.01) (0.02) (0.02) (0.02) (0.02) (0.01) (0.01) (0.02) (0.02) (0.02)

Controls YES YES YES YES YES YES YES YES YES YES
Firm FEs NO NO NO NO NO NO NO NO NO NO
Date FEs YES YES YES YES YES YES YES YES YES YES

Observations 6,099,959 6,005,322 5,935,581 5,877,097 5,776,690 6,020,006 5,927,494 5,859,923 5,804,013 5,708,099

AdjR2 0.162 0.156 0.163 0.169 0.177 0.106 0.124 0.141 0.156 0.175

46



Table 7: Call and put options’ bid-ask spread

This table reports the findings from daily panel regressions, in which call and put options bid-ask spreads on trading
day t, . . . , t + 5 are regressed on trading day t’s ambiguity (AMBG), risk (RISK ), and other firm characteristics.
Call and put measures are reported in Columns 1-5 and Columns 6-10, respectively. The sample period is from
January 2002 to December 2018. The options trading data is taken from OptionMetrics. All variables are defined in
Table B.1. All specifications include the trailing avergaes of the dependent variable (AvgDEP), AMBG(AvgAMBG)
and RISK (AvgRISK ). This allows to account for the persistence in the dependent variables, and explore the effect
of changes in AMBG and RISK relative to their trailing benchmarks. (Z) stands for a Z-Score adjustment. Firm
and date fixed effects are included in each specification. Standard errors are double clustered by firm and date, and
t-statistics are reported in parentheses below the coefficient estimates. Statistical significance at the 10%, 5%, and
1% level is indicated by *, **, and ***, respectively.

CBAS(Z) PBAS(Z)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
t t+1 t+2 t+3 t+5 t t+1 t+2 t+3 t+5

AMBG(Z) 0.001 0.006∗∗∗ 0.007∗∗∗ 0.006∗∗∗ 0.007∗∗∗ -0.000 0.006∗∗∗ 0.008∗∗∗ 0.007∗∗∗ 0.007∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

RISK(Z) 0.064∗∗∗ 0.035∗∗∗ 0.033∗∗∗ 0.032∗∗∗ 0.028∗∗∗ 0.032∗∗∗ 0.005∗∗∗ 0.001 0.001 -0.000
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Controls YES YES YES YES YES YES YES YES YES YES
Firm FEs YES YES YES YES YES YES YES YES YES YES
Date FEs YES YES YES YES YES YES YES YES YES YES

Observations 4,693,356 4,580,004 4,542,915 4,511,320 4,456,246 4,040,028 3,935,647 3,899,788 3,868,782 3,814,211

AdjR2 0.574 0.562 0.556 0.552 0.545 0.541 0.531 0.527 0.523 0.516
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Table 8: Call and put options around News Event Days

The table extends the analysis conducted in Table 3 based on ... The sample period is from January 2002 to December
2018. The options trading data is taken from OptionMetrics. All variables are defined in Table B.1. All specifications
include the trailing avergaes of the dependent variable (AvgDEP), AMBG(AvgAMBG) and RISK (AvgRISK ). This
allows to account for the persistence in the dependent variables, and explore the effect of changes in AMBG and
RISK relative to their trailing benchmarks. (Z) stands for a Z-Score adjustment. Firm and date fixed effects are
included in each specification. Standard errors are double clustered by firm and date, and t-statistics are reported in
parentheses below the coefficient estimates. Statistical significance at the 10%, 5%, and 1% level is indicated by *,
**, and ***, respectively.

Panel A: Open Interest

COI POI

EDAY 8-K EDAY 8-K

(1) (2) (3) (4) (5) (6) (7) (8)
t t+5 t t+5 t t+5 t t+5

AMBG(Z) -0.007∗∗ -0.005 -0.017∗∗∗ -0.017∗∗∗ -0.026∗∗ -0.024∗∗ -0.016∗∗∗ -0.017∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.01) (0.01) (0.00) (0.00)

RISK(Z) 0.014∗∗∗ 0.020∗∗∗ -0.009 0.008 0.015∗∗∗ 0.022∗∗∗ 0.015∗∗ 0.025∗∗∗

(0.00) (0.00) (0.01) (0.01) (0.00) (0.00) (0.01) (0.01)

Firm FEs YES YES YES YES YES YES YES YES
Date FEs YES YES YES YES YES YES YES YES

Observations 92,165 92,171 87,818 87,822 90,887 90,897 86,514 86,539

AdjR2 0.805 0.818 0.811 0.807 0.784 0.793 0.846 0.844

Panel B: Trading volume

CVOL PVOL

EDAY 8-K EDAY 8-K

(1) (2) (3) (4) (5) (6) (7) (8)
t t+1 t t+1 t t+1 t t+1

AMBG(Z) -0.037∗∗∗ -0.019∗∗∗ -0.050∗∗∗ -0.030∗∗∗ -0.026∗∗∗ -0.017∗∗∗ -0.060∗∗∗ -0.030∗∗∗

(-5.00) (-3.71) (-6.14) (-4.98) (-3.28) (-3.22) (-7.83) (-6.17)

RISK(Z) 0.318∗∗∗ 0.083∗∗∗ 0.378∗∗∗ 0.167∗∗∗ 0.299∗∗∗ 0.077∗∗∗ 0.372∗∗∗ 0.165∗∗∗

(21.81) (9.39) (17.01) (11.29) (19.91) (8.12) (16.27) (10.15)

Firm FEs YES YES YES YES YES YES YES YES
Date FEs YES YES YES YES YES YES YES YES

Observations 94,331 93,104 89,994 88,946 92,824 91,738 88,617 87,606

AdjR2 0.533 0.470 0.373 0.397 0.496 0.442 0.343 0.362
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A Appendix - Estimating equity ambiguity

The measure of ambiguity, denoted by ℧2 and defined by Equation (1), represents an expected

probability-weighted average of the variances of probabilities. We follow the recent literature (e.g.,

Brenner and Izhakian, 2018; Augustin and Izhakian, 2020; Izhakian et al., 2021) and estimate the

monthly degree of ambiguity for each firm’s equity using intraday stock return data from TAQ. To

estimate ambiguity as implemented in Equation (7) below, the expectation of and the variation in

return probabilities across the set of possible prior probability distributions, P, must be measured.

We assume that the intraday equity return distribution for each time interval during the day in

a given day represents a single prior distribution, P, in the set of possible distributions, P, and the

number of priors in the set is assumed to depend on the number of time intrevals in the month.

Each prior (distribution) in the set is represented by the thirty-second observed intraday returns

on the firm’s equity, in a time interval of 1170 seconds during the trading hours.21 Thus, the set

of priors consists of 20 realized distributions, at most, over a day. For practical implementation

reasons, we discretize return distributions into n bins Bℓ = (rℓ−1, rℓ] of equal size, such that each

distribution is represented by a histogram, as demonstrated in Figure B.1. The height of the bar

for each bin is the frequency of intraday returns observed in that bin and, thus, represents the

probability of the returns in that bin. Equipped with these 20 return histograms, we compute the

expected probability in a particular bin across the return distributions, E [P (Bℓ)], as well as the

variance of these probabilities, Var [P (Bℓ)]. To this end, an equal likelihood is assigned to each

histogram.22 We use these equally likely histograms to compute the daily degree of ambiguity of

stock j as follows

℧2 [rj ] ≡ 1√
w (1− w)

n∑
ℓ=1

E [Pj (Bℓ)] Var [Pj (Bℓ)] . (7)

To minimize the impact of bin size on the scale of ambiguity, we apply a variation of Sheppard’s

correction and scale the probability weighted-average variance of probabilities to the size of the

bins by 1√
w(1−w)

, where w = rℓ−1 − rℓ.

21Our findings are robust to the use of different time intervals, implying a different number of distributions per
day.

22Equal weighting is consistent with the principle of insufficient reason, which states that given n possibilities that
are indistinguishable except for their names, each possibility should be assigned a probability equal to 1

n
(Bernoulli,

1713; Laplace, 1814); with the idea of the simplest non-informative prior in Bayesian probability (Bayes et al., 1763),
which assigns equal probabilities to all possibilities; and with the principle of maximum entropy (Jaynes, 1957), which
states that the probability distribution which best describes the current state of knowledge is the one with the largest
entropy.
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[ Figure B.1 ]

In our implementation, we sample thirty-second stock returns from 9:30 to 16:00. Thus, we

obtain intradaily histograms of up to 39 intraday returns. If we observe no trade in a specific time

interval, we compute returns based on the volume-weighted average of the nearest trading prices

within 15 seconds distance from that time point. If there is no trade price within this distance,

we drop this 30 second observation. We ignore returns between closing and next-day opening

prices to eliminate the impact of overnight price changes and dividend distributions. We drop all

time intervals with fewer than 10 thirty-second returns, and then we drop days with fewer than

10 intraday return distributions.23 In addition, we drop extreme returns (±5% log returns over

thirty seconds), as many such returns are due to improper orders that are often later canceled by

the stock exchange. We normalize the intraday thirty-second rates of return to daily returns.24

For the bin formation, we divide the range of normalized returns into 1,002 intervals. We form a

grid of 1,000 bins, from −100% to +100%, each of width 0.2%, in addition to the left and right tails,

defined as (−∞,−100%] and [+100%,+∞), respectively. We compute the mean and the variance

of probabilities for each bin, assigning an equal likelihood to each distribution (i.e., all histograms

are equally likely).25 Some bins may not be populated with return realizations. Therefore, we

assume a normal return distribution and use its moments to extrapolate return probabilities. That

is, Pj (Bℓ) = Φ (rℓ;µj , σj)−Φ (rℓ−1;µj , σj), where Φ (·) denotes the cumulative normal probability

distribution, characterized by its mean µj and variance σ2
j of returns.26

An important characteristic of the measure of ambiguity implied by EUUP is that it is outcome

independent (up to a state space partition), which allows for a risk-independent examination of the

impacts of ambiguity on financial decisions. Specifically, the measure of ambiguity ℧2 captures the

23For robustness, we run all the regression tests excluding all time intervals with fewer than 15 thirty-second returns
and all days with fewer than 15 intraday return distributions. The findings are essentially the same.

24Our findings are robust to the inclusion of extreme price changes, as well as to a cutoff at a level of 1% in terms
of log returns.

25The assignment of equal likelihoods is equivalent to assuming that the daily ratios µ
σ
are Student-t distributed.

When µ
σ

is Student-t distributed, cumulative probabilities are uniformly distributed (Kendall and Stuart, 2010,
Proposition 1.27, p. 21).

26As in French et al. (1987), Brenner and Izhakian (2018) and Augustin and Izhakian (2020) apply the Scholes and
Williams (1977) adjustment for non-synchronous trading to estimate the variance of returns. Scholes and Williams

(1977) suggest adjusting the volatility of returns for non-synchronous trading as σ2
t =

1

Nt

Nt∑
ℓ=1

(rt,ℓ − E [rt,ℓ])
2 +

2
1

Nt − 1

Nt∑
ℓ=2

(rt,ℓ − E [rt,ℓ]) (rt,ℓ−1 − E [rt,ℓ−1]). This adjustment mitigates microstructure effects caused by bid-ask

bounce. For robustness, we run all regression tests in which ambiguity is computed using this adjusted volatility of
returns. The findings are essentially the same.
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variation in the frequencies (probabilities) of the outcomes, without incorporating the magnitudes

of the outcomes. In contrast, the measure of risk captures the variation in the magnitudes of

the outcomes without incorporating the variation in the frequencies with which the outcomes are

observed. Thus, the measure of ambiguity is risk independent, just as standard measures of risk are

ambiguity independent, implying that these two measures capture distinct aspects of uncertainty.

Other proxies for ambiguity in the literature include the volatility of mean returns (Franzoni,

2017), the volatility of volatility of returns (Faria and Correia-da Silva, 2014), or the disagreement

of analysts’ forecasts (Anderson et al., 2009). These measures are sensitive to changes in the set

of outcomes (i.e., are outcome dependent), so they are risk dependent and, therefore, less useful

for this study. For similar reasons, skewness and kurtosis (as well as other higher moments of the

return distribution) are also different from ℧2, as the former are outcome dependent and the latter

is outcome independent. Time-varying mean, time-varying volatility, and jumps (return shocks)

are outcome dependent as well.

Figure B.1 also demonstrates that ambiguity is independent of outcomes and, therefore, inde-

pendent of risk. Consider, for example, an extreme return (i.e., a stock price jump or a shock). If

the partition of the state space remains unchanged, one of the bins will be associated with a higher

return, but the probability of that particular bin, or any other bin, remains unchanged. Therefore,

ambiguity remains unchanged.27 If, on the other hand, the partition of the state space changes,

then one additional bin may be added to the histogram, thereby characterizing a new event. This

new bin may also affect the population of other bins, and therefore, affect ambiguity. However,

both the expected probability of experiencing a return in this new bin and the probability variance

associated with it, are small. Thus, such an extreme return would have a negligible impact on

ambiguity, since the effect on ambiguity is by the product of the expected probability and the

variance of probability, which is even smaller.

Brenner and Izhakian (2018) study the implications of the aggregate market ambiguity and

suggest that, in their sample, ℧2 does not capture other well-known uncertainty factors including

skewness, kurtosis, the volatility-of-mean, the volatility-of-volatility, volatility jumps, unexpected

volatility, downside risk, mixed data sampling measure of volatility forecasts (MIDAS), investor

sentiment, and several others. Augustin and Izhakian (2020) study the implications of firm am-

27To illustrate, consider a rate of return on an investment that is determined by a coin toss with unknown proba-
bilities, where heads yields a 2% return and tails a 1% return. Even if after 10 coin tosses the rate of return for heads
changes to 10% (i.e., a jump), ambiguity remains unchanged, since no new information about probabilities has been
obtained.
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biguity for the spread of credit default swaps and suggest that, in their sample, ℧2 also does not

capture these factors at the firm level.28 To further mitigate the concerns that ℧2 captures other

well-known uncertainty factors or market-microstructure effects, in Section 5.4, we examine the

explanatory power of ℧2 relative to these uncertainty factors at the daily firm level.

28In a battery of robustness tests, Augustin and Izhakian (2020) also mitigate concerns that the measure of
ambiguity ℧2 is sensitive to the selection of the time interval of intraday rate of returns, the bin size, and the type
of parametric probability distribution used to extrapolate bins’ probabilities.
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B Appendix - Variable definitions and additional tests

Figure B.1: Ambiguity measurement

This figure illustrates the way we compute the ambiguity measure for each firm-day, based on intraday stock returns,
sampled at thirty-second intervals from 9:30 to 16:00. For each firm-day, these samples create 20 intraday histograms
of up to 39 intraday returns. For each intraday histogram, we discretize the time-period return distribution into
n bins of equal size Bℓ = (rℓ−1, rℓ]. The height of each intraday histogram bin is the fraction of intraday returns
observed in that bin, representing the probability of that bin’s outcome. For simplicity, this figure shows three
histograms with six bins. Across the intraday return distributions, we compute the expected probability of returns
in a bin as E [Pj (Bℓ)] and the variance of probabilities as Var [Pj (Bℓ)]. Finally, we compute firm-day ambiguity as
℧2 [rj ] ≡ 1/

√
w (1− w)

∑n
ℓ=1 E [Pj (Bℓ)] Var [Pj (Bℓ)], where we scale the weighted-average variance of probabilities

by the bin size w = rℓ − rℓ−1.
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Figure B.2: Impulse Response Functions excluding day-0 effect

This figure plots the impulse responses of the trading and liquidity measures to a one-standard-deviation shock to
AMBG and RISK. For each dependent variable (DEP), it estimates a daily vector autoregression (VAR) system of
DEP, AMBG, and RISK, with five lags of each of the variables. All variables are defined in Table B.1, where AMBG,
RISK, and DEP are trimmed at the top and bottom 0.1% of their sample distribution. All regression tests include
the full set of firm control variables together with firm fixed effects and date fixed effects. The VAR system takes the
following form

DEPj,t = α1 +

5∑
i=1

β1,i ·AMBGj,t−i +

5∑
i=1

γ1,i ·RISKj,t−i +

5∑
i=1

δ1,i ·DEPj,t−i + Γ · CONTROLSj,t + ηj + θt + ϵ1,j,t;

AMBGj,t = α2 +

5∑
i=1

β2,i ·AMBGj,t−i +

5∑
i=1

γ2,i ·RISKj,t−i +

5∑
i=1

δ2,i ·DEPj,t−i + Γ · CONTROLSj,t + ηj + θt + ϵ2,j,t;

RISKj,t = α3 +

5∑
i=1

β3,i ·AMBGj,t−i +

5∑
i=1

γ3,i ·RISKj,t−i +

5∑
i=1

δ3,i ·DEPj,t−i + Γ · CONTROLSj,t + ηj + θt + ϵ3,j,t.

The estimated coefficients of this system are reported in Table B.2. This figure includes three groups of graphs: open interest
(Graphs A-D), trading volume (Graphs E-H) and delta-hedged returns (Graphs I-L). Each group plots the cumulative response
of DEP to a one-standard-deviation shock to AMBG or RISK. To estimate the effect of AMBG (RISK ) on DEP, the Cholesky
order is set zero. That is, day t effect is not allowed to enter the system updating process. Each graph depicts the response
in the subsequent 0, . . . , 90 trading days, listed on the x-axis. The solid line depicts the variable response and the dashed gray
lines depict the 95% confidence intervals.
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Panel E: Response of call option volume to
firm ambiguity
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Table B.1: Variable definitions

Variable Definition

Ambiguity and Other Moments

AMBG The daily ambiguity, measured as detailed in Section 2.1. To reduce the effect of outliers, the
top and bottom 0.1% of the sample distribution are trimmed.

MktAMBG AMBG of the S&P500 index (SPY ticker).
∆MktAMBG Daily changes in MktAMBG, calculated as MktAMBGt −MktAMBGt−1.
RISK The daily risk, measured as detailed in Section 2.2. To reduce the effect of outliers, the top

and bottom 0.1% of the sample distribution are trimmed.
VIX The CBOE volatility index, calculated based on the implied volatility of the S&P500 options.
∆VIX Daily changes in VIX, calculated as VIXt −VIXt−1.
VOM Daily volatility-of-mean, calculated as the variance of the averages’ return over 20 intraday

time intervals, where each interval’s average is computed using 30-second returns. To reduce
the effect of outliers, the top and bottom 0.1% of the sample distribution are trimmed.

VOV Daily volatility-of-volatility, calculated as the variance of the variances of return over 20 in-
traday time intervals, where each interval’s variance is computed using 30-second returns. To
reduce the effect of outliers, the top and bottom 0.1% of the sample distribution are trimmed.

SKEW Daily realized skewness, computed using 30-second intraday returns. To reduce the effect of
outliers, the top and bottom 0.1% of the sample distribution are trimmed.

KURT Daily realized kurtosis, calculated using 30-second intraday returns. To reduce the effect of
outliers, the top and bottom 0.1% of the sample distribution are trimmed.

AvgAMBG The 21 trading day trailing average of AMBG over trading days t− 27, . . . , t− 6.
AvgRISK The 21 trading day trailing average of RISK over trading days t− 27, . . . , t− 6.
AvgVOM The 21 trading day trailing average of VOM over trading days t− 27, . . . , t− 6.
AvgVOV The 21 trading day trailing average of VOV over trading days t− 27, . . . , t− 6.
AvgSKEW The 21 trading day trailing average of SKEW over trading days t− 27, . . . , t− 6.
AvgKURT The 21 trading day trailing average of KURT over trading days t− 27, . . . , t− 6.

Option Variables

Filters The options data is obtained from OptionMetrics. To reduce noise due to contract expiration
or unusual maturities, only call and put options with maturities of 7 to 365 days are considered.
In addition, we follow Muravyev(2016), Christoffersen et al. (2018) and Muravyev and Ni
(2020) and apply the following additional filters: we keep option contrasts with absolute
deltas between 0.1 to 0.9, keep contracts with positive open interest, keep contracts with valid
bid-ask spread information, drop contracts where the spread to midpoint ratio is greater than
70%, drop contracts with bid-ask spread above $3, and drop contracts with midpoints below
$0.10 cents.

COI The daily sum of the open interest of call options written on the stock, divided by the stock
outstanding shares. We account for the fact that open interest is lagged by one day after
November 28th, 2000. To reduce the effect of outliers, the top and bottom 0.1% of the sample
distribution are trimmed.

POI The daily sum of the open interest of put options written on the stock, divided by the stock
outstanding shares. We account for the fact that open interest is lagged by one day after
November 28th, 2000. To reduce the effect of outliers, the top and bottom 0.1% of the sample
distribution are trimmed.

56



Variable Definition

Option Variables (Cont.)

CVOL The daily sum of trading volume of call options written on the stock, divided by the stock’s
number of shares outstanding. To reduce the effect of outliers, the top and bottom 0.1% of
the sample distribution are trimmed.

PVOL The daily sum of trading volume of put options written on the stock, divided by the stock’s
number of shares outstanding. To reduce the effect of outliers, the top and bottom 0.1% of
the sample distribution are trimmed.

CCUMRET the delta-hedged cumulative return of call options written on the stock. Call options’ end
of day prices based on the midpoint between the end of day best bid and best ask quotes
(PRC t). Based in the prices, the option’s daily delta-hedged return is calculated as [(PRCt−
PRCt−1)− δt−1(PRCt −PRCt−1)]/PRCt−1. To aggregate the call or put options at the firm
level, we form value-weighted portfolios using day t-1 open interest dollar value as the weight.
We fix day t-1 open interest dollar value to allow for a natural buy and hold interpretation. To
reduce the effect of outliers, the top and bottom 0.1% of the sample distribution are trimmed.

PCUMRET the cumulative delta-hedged return of put options written on the stock. The calculation is
similar to CCUMRET calculation.

CBAS The daily average bid-ask spread of call options written on the stock, calculated as the dif-
ference between the best offer and the best ask divided by their midpoint. We take the
value-weighted average across all options for a given stock, using the daily options’ dollar
volume as the weight. To reduce the effect of outliers, the top and bottom 0.1% of the sample
distribution are trimmed.

PBAS The daily average bid-ask spread of put options written on the stock, calculated as the dif-
ference between the best offer and the best ask divided by their midpoint. We take the
value-weighted average across all options for a given stock, using the daily options’ dollar
volume as the weight. To reduce the effect of outliers, the top and bottom 0.1% of the sample
distribution are trimmed.

AvgCOI The 21 trading day trailing average of COI over trading days t− 27, . . . , t− 6.
AvgPOI The 21 trading day trailing average of POI over trading days t− 27, . . . , t− 6.
AvgCVOL The 21 trading day trailing average of CVOL over trading days t− 27, . . . , t− 6.
AvgPVOL PVOL The 21 trading day trailing average of PVOL over trading days t− 27, . . . , t− 6.
AvgCBAS The 21 trading day trailing average of CBAS over trading days t− 27, . . . , t− 6.
AvgPBAS The 21 trading day trailing average of PBAS over trading days t− 27, . . . , t− 6.

Other Stock Variables
SVOL Daily stock volume, calculated as the number of daily traded shares divided by the number of

shares outstanding. To reduce the effect of outliers, the top and bottom 0.1% of the sample
distribution are trimmed.

LnSize The natural logarithm of the firm’s size in million dollars, following Fama and French (1992).
LnBM The natural logarithm of the firm’s book-to-market ratio, rebalanced every June, following

Fama and French (1992).
InstHold The firm’s fraction of institutional holdings taken from Thomson Reuters Institutional (13F)

Holdings database.
RET The daily stock return, as reported by CRSP.
CumRet The stock’s cumulative return over the 21 trading days t− 27, . . . , t− 6.
LnNumEst The natural logarithm of one plus NumEst, where NumEst is the number of analysts covering

the firm according to the most recent information from I/B/E/S.
ln 1

AvePrc
The natural logarithm of one over the average stock price (AvePrc), adjusted for splits, where
AvePrc is calculated over trading days t− 27, . . . , t− 6.
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Table B.2: Call and put options’ variables in a VAR setting

This table reports the findings from daily panel regressions, which serve as the base of our VAR analysis. In particular,
our options’ and stock measures are regressed on five lags of ambiguity (AMBG), risk (RISK ), and the dependent
variable (DEP). All variables are defined in Table B.1. All variables are trimmed at the top and bottom 0.1% of their
sample distribution. All regression tests include the full set of firm control variables together with firm fixed effects
and date fixed effects. (Z) stands for a Z-Score adjustment. The regression specifications take the following form

DEP (Z)j,t = α+

5∑
i=1

βi ·AMBG(Z)j,t−i +

5∑
i=1

γi ·RISK(Z)j,t−i +

5∑
i=1

δi ·DEP (Z)j,t−i + (8)

δ · CONTROLSj,t + ηj + θt + ϵ1,j,t.

The sample period is from January 2002 to December 2018. The options trading data is taken from OptionMetrics. All
variables are defined in Table B.1. Standard errors are double clustered by firm and date, and t-statistics are reported
in parentheses below the coefficient estimates. Statistical significance at the 10%, 5%, and 1% level is indicated by *,
**, and ***, respectively.

(1) (2) (3) (4) (5) (6) (7) (8)
COI(Z) POI(Z) CVOL(Z) PVOL(Z) CRET(Z) PRET(Z) CBAS(Z) PBAS(Z)

AMBG(Z) t − 1 -0.001∗∗∗ -0.001∗∗∗ -0.006∗∗∗ -0.008∗∗∗ -0.011∗∗∗ 0.001 0.003∗∗∗ 0.002∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

AMBG(Z) t − 2 -0.000∗∗ -0.000∗ -0.002∗∗∗ -0.002∗∗∗ 0.002∗∗ -0.002∗ 0.002∗∗∗ 0.003∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

AMBG(Z) t − 3 0.000 -0.000 -0.001∗∗ -0.002∗∗∗ 0.005∗∗∗ -0.002∗ 0.001 0.001
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

AMBG(Z) t − 4 -0.000 -0.000 -0.001∗∗ -0.002∗∗∗ 0.004∗∗∗ -0.000 -0.000 0.001∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

AMBG(Z) t − 5 -0.000 -0.000 -0.003∗∗∗ -0.002∗∗∗ 0.004∗∗∗ -0.001 0.000 0.000
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

RISK(Z) t − 1 0.002∗∗∗ 0.002∗∗∗ 0.013∗∗∗ 0.015∗∗∗ 0.018∗∗∗ -0.003∗ 0.011∗∗∗ -0.000
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

RISK(Z) t − 2 0.001∗∗∗ 0.001∗∗∗ -0.004∗∗∗ -0.004∗∗∗ 0.004∗∗∗ -0.000 0.001 -0.003∗∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

RISK(Z) t − 3 0.000 -0.000 -0.002∗ -0.001 -0.001 0.002 -0.000 -0.003∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

RISK(Z) t − 4 0.000 -0.000 -0.001 -0.001 -0.004∗∗ 0.004∗∗ -0.004∗∗∗ -0.002
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

RISK(Z) t − 5 -0.001∗∗∗ -0.001∗∗∗ 0.000 0.003∗∗∗ -0.002 0.003∗ 0.000 0.001
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
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(1) (2) (3) (4) (5) (6) (7) (8)
COI(Z) POI(Z) CVOL(Z) PVOL(Z) CRET(Z) PRET(Z) CBAS(Z) PBAS(Z)

DEP (Z) t − 1 0.866∗∗∗ 0.871∗∗∗ 0.292∗∗∗ 0.274∗∗∗ -0.202∗∗∗ 0.143∗∗∗ 0.217∗∗∗ 0.212∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

DEP (Z) t − 2 -0.035∗∗∗ -0.044∗∗∗ 0.121∗∗∗ 0.119∗∗∗ -0.043∗∗∗ 0.044∗∗∗ 0.157∗∗∗ 0.154∗∗∗

(0.00) (0.01) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

DEP (Z) t − 3 0.095∗∗∗ 0.104∗∗∗ 0.086∗∗∗ 0.084∗∗∗ -0.006∗∗∗ 0.016∗∗∗ 0.131∗∗∗ 0.131∗∗∗

(0.00) (0.01) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

DEP (Z) t − 4 0.013∗∗∗ 0.008∗∗ 0.074∗∗∗ 0.074∗∗∗ 0.004∗∗∗ 0.009∗∗∗ 0.115∗∗∗ 0.115∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

DEP (Z) t − 5 0.038∗∗∗ 0.041∗∗∗ 0.085∗∗∗ 0.085∗∗∗ 0.004∗∗∗ 0.004∗∗∗ 0.113∗∗∗ 0.113∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Firm FEs YES YES YES YES YES YES YES YES
Date FEs YES YES YES YES YES YES YES YES

Observations 5,778,604 5,704,053 5,864,429 5,777,571 5,823,013 5,725,106 3,439,335 2,694,917

AdjR2 0.968 0.971 0.428 0.393 0.208 0.127 0.602 0.577
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Table B.3: Call and put options’ open interest and trading volume based on moneyness

The table extends the analysis conducted in Table 3 and Table 4, where firm’s options open interest and trading
volume are aggregated on each day based on contract moneyness. The moneyness groups DR1, DR2 and DR3
are defined as 0.1 <= |∆| <= 0.40, 0.40 < |∆| < 0.60, and 0.60 < |∆| <= 0.90, respectively. To estimate the
coefficients we stack each firm daily measures in the same regression and interact AMBG and RISK with dummy
variables based on the three defined moneyness groups (AMBG DR1 - AMBG DR3 and RISK DR1 - RISK DR3 ).
The sample period is from January 2002 to December 2018. The options trading data is taken from OptionMetrics.
All variables are defined in Table B.1. All specifications include the trailing avergaes of the dependent variable
(AvgDEP), AMBG(AvgAMBG) and RISK (AvgRISK ). This allows to account for the persistence in the dependent
variables, and explore the effect of changes in AMBG and RISK relative to their trailing benchmarks. (Z) stands
for a Z-Score adjustment. Firm and date fixed effects are included in each specification. Standard errors are double
clustered by firm and date, and t-statistics are reported in parentheses below the coefficient estimates. Statistical
significance at the 10%, 5%, and 1% level is indicated by *, **, and ***, respectively.

Panel A: Open interest

COI(Z) POI(Z)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
t t+1 t+2 t+3 t+5 t t+1 t+2 t+3 t+5

AMBG DR1(Z) -0.012∗∗∗ -0.013∗∗∗ -0.014∗∗∗ -0.014∗∗∗ -0.014∗∗∗ -0.012∗∗∗ -0.013∗∗∗ -0.015∗∗∗ -0.016∗∗∗ -0.017∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

AMBG DR2(Z) -0.009∗∗∗ -0.010∗∗∗ -0.010∗∗∗ -0.011∗∗∗ -0.012∗∗∗ -0.010∗∗∗ -0.011∗∗∗ -0.011∗∗∗ -0.011∗∗∗ -0.011∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

AMBG DR3(Z) -0.001 -0.001 -0.000 -0.000 -0.000 -0.008∗∗∗ -0.008∗∗∗ -0.007∗∗∗ -0.007∗∗∗ -0.006∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

RISK DR1(Z) 0.002 0.003 0.004∗ 0.004∗ 0.003 -0.006∗∗∗ -0.004∗ -0.002 -0.002 -0.000
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

RISK DR2(Z) -0.004∗∗∗ -0.002 -0.001 -0.000 0.000 0.017∗∗∗ 0.017∗∗∗ 0.016∗∗∗ 0.016∗∗∗ 0.015∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

RISK DR3(Z) -0.009∗∗∗ -0.007∗∗∗ -0.006∗∗∗ -0.005∗∗∗ -0.003∗ 0.033∗∗∗ 0.033∗∗∗ 0.035∗∗∗ 0.036∗∗∗ 0.036∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Controls YES YES YES YES YES YES YES YES YES YES
Firm FEs YES YES YES YES YES YES YES YES YES YES
Date FEs YES YES YES YES YES YES YES YES YES YES
p-Val Diff <0.001 <0.001 <0.001 <0.001 <0.001 0.061 0.005 <0.001 <0.001 <0.001
Observations 14,287,737 14,287,583 14,287,788 14,287,842 14,287,902 14,105,298 14,105,262 14,105,442 14,105,576 14,105,683

AdjR2 0.644 0.646 0.651 0.652 0.654 0.671 0.672 0.678 0.678 0.679
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Panel B: Trading volume

CVOL(Z) PVOL(Z)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
t t+1 t+2 t+3 t+5 t t+1 t+2 t+3 t+5

AMBG DR1(Z) -0.039∗∗∗ -0.019∗∗∗ -0.013∗∗∗ -0.011∗∗∗ -0.009∗∗∗ -0.042∗∗∗ -0.027∗∗∗ -0.022∗∗∗ -0.020∗∗∗ -0.017∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

AMBG DR2(Z) -0.043∗∗∗ -0.026∗∗∗ -0.020∗∗∗ -0.017∗∗∗ -0.014∗∗∗ -0.036∗∗∗ -0.021∗∗∗ -0.015∗∗∗ -0.012∗∗∗ -0.010∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

AMBG DR3(Z) -0.025∗∗∗ -0.012∗∗∗ -0.009∗∗∗ -0.009∗∗∗ -0.009∗∗∗ -0.020∗∗∗ -0.007∗∗∗ -0.003∗ -0.001 -0.001
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

RISK DR1(Z) 0.129∗∗∗ 0.047∗∗∗ 0.022∗∗∗ 0.016∗∗∗ 0.008∗∗∗ 0.119∗∗∗ 0.047∗∗∗ 0.024∗∗∗ 0.016∗∗∗ 0.012∗∗∗

(0.01) (0.00) (0.00) (0.00) (0.00) (0.01) (0.00) (0.00) (0.00) (0.00)

RISK DR2(Z) 0.131∗∗∗ 0.053∗∗∗ 0.028∗∗∗ 0.022∗∗∗ 0.016∗∗∗ 0.117∗∗∗ 0.049∗∗∗ 0.029∗∗∗ 0.023∗∗∗ 0.019∗∗∗

(0.01) (0.00) (0.00) (0.00) (0.00) (0.01) (0.00) (0.00) (0.00) (0.00)

RISK DR3(Z) 0.135∗∗∗ 0.063∗∗∗ 0.040∗∗∗ 0.033∗∗∗ 0.026∗∗∗ 0.129∗∗∗ 0.064∗∗∗ 0.044∗∗∗ 0.037∗∗∗ 0.031∗∗∗

(0.01) (0.00) (0.00) (0.00) (0.00) (0.01) (0.00) (0.00) (0.00) (0.00)

Controls YES YES YES YES YES YES YES YES YES YES
Firm FEs YES YES YES YES YES YES YES YES YES YES
Date FEs YES YES YES YES YES YES YES YES YES YES
p-Val Diff <0.001 <0.001 0.029 0.338 0.900 <0.001 <0.001 <0.001 <0.001 <0.001
Observations 14,873,117 14,572,341 14,458,208 14,355,486 14,164,250 14,595,725 14,346,982 14,262,558 14,184,373 14,029,350

AdjR2 0.288 0.284 0.273 0.262 0.243 0.270 0.266 0.256 0.247 0.233
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Table B.4: Call and put options’ open interest and trading volume based on maturity

The table extends the analysis conducted in Table 3 and Table 4, where firm’s options open interest and trading
volume are aggregated on each day based on contract maturity. The maturity groups MR1, MR2 and MR3 are
defined as Maturity <= 3 months, 3 < Maturity <= 6 months, and 6 < Maturity <= 12 months, respectively. To
estimate the coefficients we stack each firm daily measures in the same regression and interact AMBG and RISK
with dummy variables based on the three defined maturity groups (AMBG MR1 - AMBG MR3 and RISK MR1 -
RISK MR3 ). The sample period is from January 2002 to December 2018. The options trading data is taken from
OptionMetrics. All variables are defined in Table B.1. All specifications include the trailing avergaes of the dependent
variable (AvgDEP), AMBG(AvgAMBG) and RISK (AvgRISK ). This allows to account for the persistence in the
dependent variables, and explore the effect of changes in AMBG and RISK relative to their trailing benchmarks.
(Z) stands for a Z-Score adjustment. Firm and date fixed effects are included in each specification. Standard errors
are double clustered by firm and date, and t-statistics are reported in parentheses below the coefficient estimates.
Statistical significance at the 10%, 5%, and 1% level is indicated by *, **, and ***, respectively.

Panel A: Open interest

COI(Z) POI(Z)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
t t+1 t+2 t+3 t+5 t t+1 t+2 t+3 t+5

AMBG MR1(Z) -0.019∗∗∗ -0.020∗∗∗ -0.022∗∗∗ -0.023∗∗∗ -0.025∗∗∗ -0.025∗∗∗ -0.026∗∗∗ -0.027∗∗∗ -0.028∗∗∗ -0.029∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

AMBG MR2(Z) -0.005∗∗∗ -0.005∗∗∗ -0.004∗∗∗ -0.004∗∗∗ -0.004∗∗∗ -0.007∗∗∗ -0.007∗∗∗ -0.007∗∗∗ -0.007∗∗∗ -0.006∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

AMBG MR3(Z) -0.001 -0.001 -0.000 0.000 0.001 0.001 0.001 0.001 0.001 0.002
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

RISK MR1(Z) -0.010∗∗∗ -0.009∗∗∗ -0.008∗∗∗ -0.008∗∗∗ -0.008∗∗∗ 0.021∗∗∗ 0.020∗∗∗ 0.020∗∗∗ 0.020∗∗∗ 0.018∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

RISK MR2(Z) 0.000 0.001 0.002 0.002 0.003∗ 0.013∗∗∗ 0.014∗∗∗ 0.015∗∗∗ 0.015∗∗∗ 0.016∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

RISK MR3(Z) -0.005∗∗ -0.003 -0.001 0.000 0.002 0.006∗∗ 0.008∗∗∗ 0.010∗∗∗ 0.011∗∗∗ 0.013∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Controls YES YES YES YES YES YES YES YES YES YES
Firm FEs YES YES YES YES YES YES YES YES YES YES
Date FEs YES YES YES YES YES YES YES YES YES YES
p-Val Diff <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
Observations 13,954,191 13,953,941 13,953,829 13,953,749 13,953,506 13,525,611 13,525,497 13,525,543 13,525,476 13,525,283

AdjR2 0.629 0.632 0.636 0.638 0.640 0.633 0.635 0.640 0.642 0.642
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Panel B: Trading volume

CVOL(Z) PVOL(Z)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
t t+1 t+2 t+3 t+5 t t+1 t+2 t+3 t+5

AMBG MR1(Z) -0.052∗∗∗ -0.035∗∗∗ -0.029∗∗∗ -0.027∗∗∗ -0.026∗∗∗ -0.055∗∗∗ -0.036∗∗∗ -0.031∗∗∗ -0.027∗∗∗ -0.025∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

AMBG MR2(Z) -0.021∗∗∗ -0.010∗∗∗ -0.007∗∗∗ -0.006∗∗∗ -0.006∗∗∗ -0.019∗∗∗ -0.009∗∗∗ -0.006∗∗∗ -0.005∗∗∗ -0.004∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

AMBG MR3(Z) -0.015∗∗∗ -0.004∗ -0.000 0.001 0.001 -0.012∗∗∗ -0.002 0.002 0.003 0.004∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

RISK MR1(Z) 0.108∗∗∗ 0.035∗∗∗ 0.011∗∗∗ 0.005∗∗ -0.001 0.102∗∗∗ 0.035∗∗∗ 0.013∗∗∗ 0.006∗∗ 0.000
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

RISK MR2(Z) 0.113∗∗∗ 0.054∗∗∗ 0.035∗∗∗ 0.029∗∗∗ 0.024∗∗∗ 0.109∗∗∗ 0.057∗∗∗ 0.040∗∗∗ 0.034∗∗∗ 0.029∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

RISK MR3(Z) 0.115∗∗∗ 0.059∗∗∗ 0.042∗∗∗ 0.037∗∗∗ 0.032∗∗∗ 0.111∗∗∗ 0.061∗∗∗ 0.044∗∗∗ 0.038∗∗∗ 0.035∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Controls YES YES YES YES YES YES YES YES YES YES
Firm FEs YES YES YES YES YES YES YES YES YES YES
Date FEs YES YES YES YES YES YES YES YES YES YES
p-Val Diff <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
Observations 14,477,438 14,198,711 14,106,537 14,019,723 13,846,917 14,010,078 13,749,932 13,664,803 13,584,760 13,423,421

AdjR2 0.333 0.334 0.331 0.325 0.314 0.298 0.297 0.293 0.288 0.279
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Table B.5: Call and put options’ open interest - reporting the full set of controls

This table reports the full set of results from Table 3. (Z) stands for a Z-Score adjustment. Firm and date fixed effects
are included in each specification. Standard errors are double clustered by firm and date, and t-statistics are reported
in parentheses below the coefficient estimates. Statistical significance at the 10%, 5%, and 1% level is indicated by *,
**, and ***, respectively.

COI(Z) POI(Z)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
t t+1 t+2 t+3 t+5 t t+1 t+2 t+3 t+5

AMBG(Z) -0.012∗∗∗ -0.012∗∗∗ -0.013∗∗∗ -0.013∗∗∗ -0.014∗∗∗ -0.014∗∗∗ -0.014∗∗∗ -0.014∗∗∗ -0.014∗∗∗ -0.015∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

RISK(Z) -0.004∗∗∗ -0.003∗∗ -0.001 -0.001 -0.000 0.015∗∗∗ 0.016∗∗∗ 0.017∗∗∗ 0.017∗∗∗ 0.017∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

LnSize 0.003 0.003 0.003 0.003 0.003 -0.016∗∗∗ -0.017∗∗∗ -0.018∗∗∗ -0.019∗∗∗ -0.021∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

LnBM -0.016∗∗∗ -0.017∗∗∗ -0.018∗∗∗ -0.018∗∗∗ -0.020∗∗∗ -0.005∗ -0.005∗∗ -0.005∗∗ -0.006∗∗ -0.007∗∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

CumRet 0.004∗∗∗ 0.004∗∗∗ 0.004∗∗∗ 0.003∗∗∗ 0.003∗∗∗ -0.001∗∗∗ -0.001∗∗∗ -0.001∗∗∗ -0.001∗∗∗ -0.000∗∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

LnNumEst 0.013∗∗∗ 0.014∗∗∗ 0.015∗∗∗ 0.015∗∗∗ 0.016∗∗∗ 0.022∗∗∗ 0.022∗∗∗ 0.023∗∗∗ 0.023∗∗∗ 0.023∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.01)

InstHold 0.019∗∗ 0.020∗∗ 0.021∗∗ 0.021∗∗ 0.022∗∗ 0.002 0.003 0.004 0.004 0.005
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

ln 1
AvePrc

-0.027∗∗∗ -0.031∗∗∗ -0.035∗∗∗ -0.039∗∗∗ -0.046∗∗∗ -0.076∗∗∗ -0.082∗∗∗ -0.087∗∗∗ -0.092∗∗∗ -0.101∗∗∗

(0.01) (0.01) (0.01) (0.01) (0.01) (0.00) (0.00) (0.01) (0.01) (0.01)

RET 0.015∗∗∗ 0.014∗∗∗ 0.014∗∗∗ 0.014∗∗∗ 0.013∗∗∗ -0.009∗∗∗ -0.009∗∗∗ -0.008∗∗∗ -0.008∗∗∗ -0.007∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

AvgDEP 0.653∗∗∗ 0.650∗∗∗ 0.649∗∗∗ 0.645∗∗∗ 0.639∗∗∗ 0.722∗∗∗ 0.718∗∗∗ 0.716∗∗∗ 0.713∗∗∗ 0.705∗∗∗

(0.01) (0.01) (0.01) (0.01) (0.01) (0.02) (0.02) (0.02) (0.02) (0.01)

AvgAMBG 0.136 0.059 -0.016 -0.098 -0.229 -0.210 -0.240 -0.318 -0.362 -0.498∗

(0.22) (0.21) (0.22) (0.22) (0.22) (0.27) (0.27) (0.27) (0.28) (0.27)

AvgRISK 23.001∗∗∗ 23.097∗∗∗ 23.872∗∗∗ 24.950∗∗∗ 26.565∗∗∗ 4.632 4.130 4.446 4.726 5.610
(2.67) (2.71) (2.75) (2.80) (2.89) (3.59) (3.59) (3.62) (3.62) (3.60)

Firm FEs YES YES YES YES YES YES YES YES YES YES
Date FEs YES YES YES YES YES YES YES YES YES YES

Observations 5,871,968 5,872,005 5,872,150 5,872,179 5,872,223 5,791,506 5,791,552 5,791,681 5,791,760 5,791,788

AdjR2 0.837 0.837 0.840 0.839 0.839 0.846 0.846 0.848 0.847 0.845
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Table B.6: Call and put options’ trading volume - reporting the full set of controls

This table reports the full set of results from Table 4. (Z) stands for a Z-Score adjustment. Firm and date fixed effects
are included in each specification. Standard errors are double clustered by firm and date, and t-statistics are reported
in parentheses below the coefficient estimates. Statistical significance at the 10%, 5%, and 1% level is indicated by *,
**, and ***, respectively.

CVOL(Z) PVOL(Z)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
t t+1 t+2 t+3 t+5 t t+1 t+2 t+3 t+5

AMBG(Z) -0.040∗∗∗ -0.023∗∗∗ -0.018∗∗∗ -0.017∗∗∗ -0.016∗∗∗ -0.039∗∗∗ -0.023∗∗∗ -0.018∗∗∗ -0.015∗∗∗ -0.013∗∗∗

(-16.88) (-15.68) (-14.93) (-14.14) (-13.39) (-15.32) (-13.82) (-13.55) (-13.27) (-12.03)

RISK(Z) 0.137∗∗∗ 0.058∗∗∗ 0.033∗∗∗ 0.026∗∗∗ 0.020∗∗∗ 0.132∗∗∗ 0.059∗∗∗ 0.037∗∗∗ 0.029∗∗∗ 0.024∗∗∗

(24.92) (17.96) (13.30) (11.65) (9.61) (23.94) (17.49) (14.03) (12.16) (10.59)

LnSize -0.006 -0.009 -0.011 -0.011 -0.011 -0.000 -0.003 -0.004 -0.005 -0.005
(-0.87) (-1.29) (-1.52) (-1.59) (-1.45) (-0.06) (-0.42) (-0.53) (-0.68) (-0.65)

LnBM -0.021∗∗∗ -0.022∗∗∗ -0.022∗∗∗ -0.022∗∗∗ -0.023∗∗∗ -0.016∗∗∗ -0.016∗∗∗ -0.017∗∗∗ -0.017∗∗∗ -0.017∗∗∗

(-4.82) (-4.72) (-4.61) (-4.58) (-4.59) (-3.48) (-3.40) (-3.34) (-3.31) (-3.40)

CumRet 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗

(8.29) (6.29) (5.06) (4.15) (3.66) (11.59) (9.67) (8.60) (8.85) (7.99)

LnNumEst 0.018∗∗∗ 0.014∗ 0.013∗ 0.013 0.010 0.032∗∗∗ 0.032∗∗∗ 0.032∗∗∗ 0.032∗∗∗ 0.032∗∗∗

(2.58) (1.95) (1.75) (1.62) (1.27) (4.21) (3.93) (3.89) (3.81) (3.63)

InstHold 0.017 0.018 0.015 0.015 0.017 0.015 0.013 0.013 0.014 0.016
(1.47) (1.42) (1.17) (1.19) (1.25) (1.21) (1.04) (1.02) (1.07) (1.17)

ln 1
AvePrc

-0.134∗∗∗ -0.151∗∗∗ -0.157∗∗∗ -0.163∗∗∗ -0.169∗∗∗ -0.143∗∗∗ -0.149∗∗∗ -0.150∗∗∗ -0.152∗∗∗ -0.154∗∗∗

(-13.43) (-13.99) (-14.19) (-14.32) (-14.33) (-13.44) (-13.40) (-13.22) (-13.19) (-13.05)

RET 0.029∗∗∗ 0.012∗∗∗ 0.008∗∗∗ 0.006∗∗∗ 0.005∗∗∗ -0.014∗∗∗ -0.004∗∗∗ -0.002∗∗∗ -0.001∗∗∗ -0.000∗

(35.05) (24.99) (22.10) (19.13) (16.97) (-24.06) (-10.83) (-7.93) (-4.01) (-1.86)

AvgDEP 3.450∗∗∗ 3.463∗∗∗ 3.436∗∗∗ 3.379∗∗∗ 3.271∗∗∗ 4.082∗∗∗ 4.055∗∗∗ 4.013∗∗∗ 3.944∗∗∗ 3.810∗∗∗

(24.98) (23.11) (22.85) (21.92) (20.16) (25.66) (24.52) (23.52) (22.67) (21.27)

AvgAMBG 1.068∗∗∗ -0.733∗∗ -1.293∗∗∗ -1.566∗∗∗ -1.735∗∗∗ 0.384 -1.432∗∗∗ -1.971∗∗∗ -2.275∗∗∗ -2.519∗∗∗

(2.98) (-2.27) (-4.01) (-4.82) (-4.88) (0.95) (-3.86) (-5.36) (-6.07) (-6.44)

AvgRISK -100.412∗∗∗ -25.524∗∗∗ -2.941 3.766 10.294∗∗ -94.148∗∗∗ -26.064∗∗∗ -5.856 1.609 6.391
(-17.70) (-5.61) (-0.68) (0.87) (2.36) (-16.98) (-5.80) (-1.33) (0.36) (1.44)

Firm FEs YES YES YES YES YES YES YES YES YES YES
Date FEs YES YES YES YES YES YES YES YES YES YES

Observations 6,008,137 5,940,699 5,924,982 5,910,826 5,884,918 5,922,273 5,857,357 5,841,742 5,828,234 5,802,097

AdjR2 0.400 0.409 0.408 0.404 0.395 0.369 0.373 0.371 0.367 0.359
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Table B.7: Trading volume based Put-call ratio and stock return predictability

This table reports the findings from daily panel regressions, in which DGTW adjusted cumulative stock returns
from trading day t + 1, . . . , t + 10 are regressed on trading day t’s put-call volume ratio (PCVOL RATIO), ambi-
guity (AMBG), risk (RISK ), the interaction of PCVOL RATIO with AMBG and RISK controlling for other firm
characteristics. In particular,PCVOL RATIO is calculated as day t’s aggregate put option trading volume divided
by the aggregate trading volume of both call and put options (P/(C+P)). Columns 1-3, 4-6 and 7-9 report results
for cumulative returns based on one, five and ten trading days, respectively. The sample period is from January
2002 to December 2018. The options trading data is taken from OptionMetrics. All variables are defined in Ta-
ble B.1. All specifications include the trailing avergaes of the dependent variable (AvgDEP), AMBG(AvgAMBG)
and RISK (AvgRISK ). This allows to account for the persistence in the dependent variables, and explore the effect
of changes in AMBG and RISK relative to their trailing benchmarks. (Z) stands for a Z-Score adjustment. Date
fixed effects are included in each specification. Standard errors are double clustered by firm and date, and t-statistics
are reported in parentheses below the coefficient estimates. Statistical significance at the 10%, 5%, and 1% level is
indicated by *, **, and ***, respectively.

DGTWt1 DGTWt5 DGTWt10

(1) (2) (3) (4) (5) (6) (7) (8) (9)
t+1 t+1 t+1 t+1 t+5 t+1 t+5 t+1 t+5 t+1 t+10 t+1 t+10 t+1 t+10

AMBG(Z) 0.004 0.004 0.004 0.020∗∗∗ 0.020∗∗∗ 0.020∗∗∗ 0.028∗∗∗ 0.028∗∗∗ 0.028∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

RISK(Z) 0.009 0.009 0.009 0.042∗∗ 0.042∗∗ 0.042∗∗ 0.061∗∗∗ 0.061∗∗∗ 0.061∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

PCVOL RATIO(Z) -0.011∗∗∗ -0.011∗∗∗ -0.011∗∗∗ -0.014∗∗∗ -0.014∗∗∗ -0.014∗∗∗ -0.018∗∗∗ -0.018∗∗∗ -0.018∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

PCVOL RATIO(Z)×AMBG(Z) 0.002∗∗ 0.002 0.003 0.005 0.003 0.004
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

PCVOL RATIO(Z)×RISK(Z) -0.000 0.003 0.002
(0.00) (0.00) (0.00)

Controls YES YES YES YES YES YES YES YES YES
Firm FEs NO NO NO NO NO NO NO NO NO
Date FEs YES YES YES YES YES YES YES YES YES

Observations 5,002,463 5,002,463 5,002,463 5,001,520 5,001,520 5,001,520 4,999,809 4,999,809 4,999,809

AdjR2 0.004 0.004 0.004 0.010 0.010 0.010 0.016 0.016 0.016
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Table B.8: Option based measures and stock return predictability - firm fixed effects

This table repeats the analysis reported in Table 5 including firm fixed effects. The sample period is from Jan-
uary 2002 to December 2018. The options trading data is taken from OptionMetrics. All variables are defined in
Table B.1. All specifications include the trailing avergaes of the dependent variable (AvgDEP), AMBG(AvgAMBG)
and RISK (AvgRISK ). This allows to account for the persistence in the dependent variables, and explore the effect
of changes in AMBG and RISK relative to their trailing benchmarks. (Z) stands for a Z-Score adjustment. Firm
and date fixed effects are included in each specification. Standard errors are double clustered by firm and date, and
t-statistics are reported in parentheses below the coefficient estimates. Statistical significance at the 10%, 5%, and
1% level is indicated by *, **, and ***, respectively.

Panel A: The put-call open Interest ratio

DGTWt1 DGTWt5 DGTWt10

(1) (2) (3) (4) (5) (6) (7) (8) (9)
t+1 t+1 t+1 t+1 t+5 t+1 t+5 t+1 t+5 t+1 t+10 t+1 t+10 t+1 t+10

AMBG(Z) 0.005∗∗ 0.005∗∗ 0.005∗∗ 0.018∗∗∗ 0.018∗∗∗ 0.018∗∗∗ 0.027∗∗∗ 0.027∗∗∗ 0.027∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

RISK(Z) 0.006 0.006 0.006 0.023 0.023 0.023 0.043∗∗ 0.043∗∗ 0.043∗∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

∆PC RATIO(Z) -0.310∗∗∗ -0.305∗∗∗ -0.304∗∗∗ -0.351∗∗∗ -0.345∗∗∗ -0.344∗∗∗ -0.362∗∗∗ -0.356∗∗∗ -0.355∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

∆PC RATIO(Z)×AMBG(Z) 0.034∗∗∗ 0.031∗∗∗ 0.044∗∗∗ 0.037∗∗∗ 0.046∗∗∗ 0.039∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

∆PC RATIO(Z)×RISK(Z) -0.005 -0.012∗∗∗ -0.013∗∗

(0.00) (0.00) (0.00)

Controls YES YES YES YES YES YES YES YES YES
Firm FEs YES YES YES YES YES YES YES YES YES
Date FEs YES YES YES YES YES YES YES YES YES

Observations 5,822,491 5,822,491 5,822,491 5,820,016 5,820,016 5,820,016 5,817,886 5,817,886 5,817,886

AdjR2 0.027 0.027 0.027 0.014 0.014 0.014 0.018 0.018 0.018
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Panel B: The implied volatility spread measure

DGTWt1 DGTWt5 DGTWt10

(1) (2) (3) (4) (5) (6) (7) (8) (9)
t+1 t+1 t+1 t+1 t+5 t+1 t+5 t+1 t+5 t+1 t+10 t+1 t+10 t+1 t+10

AMBG(Z) 0.004 0.004 0.004 0.018∗∗∗ 0.017∗∗∗ 0.017∗∗∗ 0.025∗∗∗ 0.024∗∗∗ 0.024∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

RISK(Z) 0.004 0.004 0.006 0.025 0.024 0.026∗ 0.044∗∗ 0.043∗∗ 0.045∗∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

IVS(Z) 0.063∗∗∗ 0.060∗∗∗ 0.054∗∗∗ 0.075∗∗∗ 0.070∗∗∗ 0.063∗∗∗ 0.083∗∗∗ 0.076∗∗∗ 0.068∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

IVS(Z)×AMBG(Z) -0.006∗∗∗ -0.000 -0.014∗∗∗ -0.008 -0.021∗∗∗ -0.013∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

IVS(Z)×RISK(Z) 0.012∗∗∗ 0.012∗∗ 0.014∗

(0.00) (0.00) (0.00)

Controls YES YES YES YES YES YES YES YES YES
Firm FEs YES YES YES YES YES YES YES YES YES
Date FEs YES YES YES YES YES YES YES YES YES

Observations 5,614,952 5,614,952 5,614,952 5,613,843 5,613,843 5,613,843 5,612,216 5,612,216 5,612,216

AdjR2 0.004 0.004 0.004 0.009 0.009 0.009 0.016 0.016 0.016
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Table B.9: Call and put options’ cumulative delta-hedged returns - firm fixed effects

This table repeat the analysis conducted in Table 6 including firm fixed effects. The sample period is from Jan-
uary 2002 to December 2018. The options trading data is taken from OptionMetrics. All variables are defined in
Table B.1. All specifications include the trailing avergaes of the dependent variable (AvgDEP), AMBG(AvgAMBG)
and RISK (AvgRISK ). This allows to account for the persistence in the dependent variables, and explore the effect
of changes in AMBG and RISK relative to their trailing benchmarks. (Z) stands for a Z-Score adjustment. Firm
and date fixed effects are included in each specification. Standard errors are double clustered by firm and date, and
t-statistics are reported in parentheses below the coefficient estimates. Statistical significance at the 10%, 5%, and
1% level is indicated by *, **, and ***, respectively.

CCUMRET PCUMRET

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
t t+1 t+2 t+3 t+5 t t+1 t+2 t+3 t+5

AMBG(Z) -0.139∗∗∗ -0.175∗∗∗ -0.183∗∗∗ -0.183∗∗∗ -0.181∗∗∗ -0.193∗∗∗ -0.246∗∗∗ -0.284∗∗∗ -0.309∗∗∗ -0.341∗∗∗

(0.01) (0.01) (0.01) (0.01) (0.02) (0.01) (0.01) (0.01) (0.02) (0.02)

RISK(Z) 0.311∗∗∗ 0.409∗∗∗ 0.500∗∗∗ 0.551∗∗∗ 0.662∗∗∗ 0.314∗∗∗ 0.435∗∗∗ 0.514∗∗∗ 0.578∗∗∗ 0.680∗∗∗

(0.01) (0.02) (0.02) (0.02) (0.02) (0.01) (0.01) (0.02) (0.02) (0.02)

Controls YES YES YES YES YES YES YES YES YES YES
Firm FEs YES YES YES YES YES YES YES YES YES YES
Date FEs YES YES YES YES YES YES YES YES YES YES

Observations 6,099,948 6,005,311 5,935,571 5,877,084 5,776,677 6,019,993 5,927,483 5,859,912 5,803,999 5,708,088

AdjR2 0.162 0.157 0.164 0.171 0.182 0.106 0.124 0.143 0.158 0.179
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Table B.10: Call and put options’ cumulative delta-hedged returns - Monthly RISKand AMBG

To link our option return findings reported in Table 6 with Cao and Han (2013), in this table we also reports
the coefficient estimates of the monthly RISK and AMBG measures (AvgRISK and AvgAMBG) included in the
regressions reported in Table 6. The sample period is from January 2002 to December 2018. The options trading
data is taken from OptionMetrics. All variables are defined in Table B.1. All specifications include the trailing
avergaes of the dependent variable (AvgDEP), AMBG(AvgAMBG) and RISK (AvgRISK ). This allows to account
for the persistence in the dependent variables, and explore the effect of changes in AMBG and RISK relative to
their trailing benchmarks. (Z) stands for a Z-Score adjustment. Date fixed effects are included in each specification.
Standard errors are double clustered by firm and date, and t-statistics are reported in parentheses below the coefficient
estimates. Statistical significance at the 10%, 5%, and 1% level is indicated by *, **, and ***, respectively.

CCUMRET(Z) PCUMRET(Z)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
t t+1 t+2 t+3 t+5 t t+1 t+2 t+3 t+5

AMBG(Z) -0.138∗∗∗ -0.174∗∗∗ -0.182∗∗∗ -0.184∗∗∗ -0.185∗∗∗ -0.194∗∗∗ -0.251∗∗∗ -0.292∗∗∗ -0.321∗∗∗ -0.360∗∗∗

(0.01) (0.01) (0.01) (0.01) (0.02) (0.01) (0.01) (0.01) (0.02) (0.02)

RISK(Z) 0.305∗∗∗ 0.403∗∗∗ 0.492∗∗∗ 0.542∗∗∗ 0.652∗∗∗ 0.313∗∗∗ 0.433∗∗∗ 0.513∗∗∗ 0.577∗∗∗ 0.680∗∗∗

(0.01) (0.02) (0.02) (0.02) (0.02) (0.01) (0.01) (0.02) (0.02) (0.02)

AvgAMBG 0.002∗∗∗ 0.002∗∗∗ 0.003∗∗∗ 0.003∗∗∗ 0.003∗∗∗ 0.002∗∗∗ 0.003∗∗∗ 0.003∗∗∗ 0.003∗∗∗ 0.004∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

AvgRISK -0.030∗∗∗ -0.039∗∗∗ -0.049∗∗∗ -0.055∗∗∗ -0.069∗∗∗ -0.028∗∗∗ -0.036∗∗∗ -0.042∗∗∗ -0.047∗∗∗ -0.055∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Controls YES YES YES YES YES YES YES YES YES YES
Firm FEs NO NO NO NO NO NO NO NO NO NO
Date FEs YES YES YES YES YES YES YES YES YES YES

Observations 6,099,959 6,005,322 5,935,581 5,877,097 5,776,690 6,020,006 5,927,494 5,859,923 5,804,013 5,708,099

AdjR2 0.162 0.156 0.163 0.169 0.177 0.106 0.124 0.141 0.156 0.175
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Table B.11: Call and put options’ open interest and volume based on firm size subsamples

This table reports the findings from daily panel regressions, in which call and put stock option open interest (Panel
A) and volume (Panel B) on trading day t, . . . , t+5 are regressed on trading day t’s ambiguity (AMBG), risk (RISK ),
and other firm characteristics conditioning on firm size. In particular, the dummy variables Size1-Size3 are equal
to one if the firm is assigned to size terciles 1-3, respectively, and zero otherwise. AMBG × Size1 — AMBG ×
Size3 (RISK × Size1 — RISK × Size3) are the interaction of AMBG (RISK ) with Size1-Size3 dummy variables.
Call and Put measures are reported in Columns 1-5 and Columns 6-10, respectively. The sample period is from
January 2002 to December 2018. The options trading data is taken from OptionMetrics. All variables are defined in
Table B.1. All specifications include the trailing avergaes of the dependent variable (AvgDEP), AMBG(AvgAMBG)
and RISK (AvgRISK ). This allows to account for the persistence in the dependent variables, and explore the effect
of changes in AMBG and RISK relative to their trailing benchmarks. (Z) stands for a Z-Score adjustment. Firm
and date fixed effects are included in each specification. Standard errors are double clustered by firm and date, and
t-statistics are reported in parentheses below the coefficient estimates. Statistical significance at the 10%, 5%, and
1% level is indicated by *, **, and ***, respectively.

Panel A: Open Interest

COI(Z) POI(Z)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
t t+1 t+2 t+3 t+5 t t+1 t+2 t+3 t+5

AMBG(Z) × Size1 -0.013∗∗∗ -0.013∗∗∗ -0.013∗∗∗ -0.013∗∗∗ -0.013∗∗∗ -0.006∗∗∗ -0.007∗∗∗ -0.007∗∗∗ -0.007∗∗∗ -0.007∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

AMBG(Z) × Size2 -0.012∗∗∗ -0.013∗∗∗ -0.013∗∗∗ -0.013∗∗∗ -0.013∗∗∗ -0.010∗∗∗ -0.011∗∗∗ -0.011∗∗∗ -0.011∗∗∗ -0.011∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

AMBG(Z) × Size3 -0.008∗∗∗ -0.008∗∗∗ -0.008∗∗∗ -0.008∗∗∗ -0.008∗∗∗ -0.011∗∗∗ -0.011∗∗∗ -0.011∗∗∗ -0.011∗∗∗ -0.011∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

RISK(Z) × Size1 -0.007∗∗∗ -0.006∗∗∗ -0.006∗∗∗ -0.006∗∗∗ -0.006∗∗∗ 0.009∗∗∗ 0.010∗∗∗ 0.010∗∗∗ 0.010∗∗∗ 0.011∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

RISK(Z) × Size2 0.001 0.003 0.005∗∗ 0.006∗∗ 0.007∗∗∗ 0.021∗∗∗ 0.022∗∗∗ 0.024∗∗∗ 0.024∗∗∗ 0.024∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

RISK(Z) × Size3 0.019∗∗∗ 0.025∗∗∗ 0.031∗∗∗ 0.034∗∗∗ 0.039∗∗∗ 0.060∗∗∗ 0.062∗∗∗ 0.066∗∗∗ 0.067∗∗∗ 0.069∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.01) (0.01) (0.01) (0.01) (0.01)

Firm FEs YES YES YES YES YES YES YES YES YES YES
Date FEs YES YES YES YES YES YES YES YES YES YES
Firm Cluster YES YES YES YES YES YES YES YES YES YES
Date Cluster YES YES YES YES YES YES YES YES YES YES

Observations 5,887,441 5,887,438 5,887,517 5,887,539 5,887,564 5,806,847 5,806,844 5,806,942 5,806,963 5,807,012

AdjR2 0.843 0.843 0.844 0.844 0.842 0.856 0.855 0.857 0.857 0.854
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Panel B: Volume

CVOL(Z) PVOL(Z)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
t t+1 t+2 t+3 t+5 t t+1 t+2 t+3 t+5

AMBG(Z) × Size1 -0.014∗∗∗ -0.011∗∗∗ -0.011∗∗∗ -0.011∗∗∗ -0.011∗∗∗ -0.005∗∗∗ -0.006∗∗∗ -0.005∗∗∗ -0.006∗∗∗ -0.006∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

AMBG(Z) × Size2 -0.028∗∗∗ -0.019∗∗∗ -0.017∗∗∗ -0.016∗∗∗ -0.016∗∗∗ -0.022∗∗∗ -0.014∗∗∗ -0.012∗∗∗ -0.011∗∗∗ -0.010∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

AMBG(Z) × Size3 -0.043∗∗∗ -0.022∗∗∗ -0.016∗∗∗ -0.014∗∗∗ -0.013∗∗∗ -0.042∗∗∗ -0.022∗∗∗ -0.016∗∗∗ -0.013∗∗∗ -0.011∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

RISK(Z) × Size1 0.112∗∗∗ 0.044∗∗∗ 0.024∗∗∗ 0.018∗∗∗ 0.013∗∗∗ 0.104∗∗∗ 0.044∗∗∗ 0.026∗∗∗ 0.020∗∗∗ 0.015∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

RISK(Z) × Size2 0.175∗∗∗ 0.073∗∗∗ 0.041∗∗∗ 0.031∗∗∗ 0.023∗∗∗ 0.172∗∗∗ 0.075∗∗∗ 0.047∗∗∗ 0.035∗∗∗ 0.030∗∗∗

(0.01) (0.00) (0.00) (0.00) (0.00) (0.01) (0.01) (0.00) (0.00) (0.00)

RISK(Z) × Size3 0.288∗∗∗ 0.150∗∗∗ 0.102∗∗∗ 0.087∗∗∗ 0.072∗∗∗ 0.312∗∗∗ 0.171∗∗∗ 0.122∗∗∗ 0.103∗∗∗ 0.089∗∗∗

(0.01) (0.01) (0.01) (0.01) (0.01) (0.02) (0.01) (0.01) (0.01) (0.01)

Firm FEs YES YES YES YES YES YES YES YES YES YES
Date FEs YES YES YES YES YES YES YES YES YES YES
Firm Cluster YES YES YES YES YES YES YES YES YES YES
Date Cluster YES YES YES YES YES YES YES YES YES YES

Observations 6,008,137 5,940,699 5,924,982 5,910,826 5,884,918 5,922,273 5,857,357 5,841,742 5,828,234 5,802,097

AdjR2 0.402 0.409 0.408 0.404 0.395 0.371 0.374 0.372 0.367 0.359
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Table B.12: Call and put options’ open interest and volume - sub periods

This table reports the findings from daily panel regressions, in which call and put stock option open interest (Panel A)
and volume (Panel B) on trading day t, . . . , t+5 are regressed on trading day t’s ambiguity (AMBG), risk (RISK ), and
other firm characteristics conditioning on three subperiods. In particular, the dummy variables Sub1-Sub3 are equal
to one if the sample period is 2002-2006, 2007-2012, and 2013-2018, respectively, and zero otherwise. AMBG × Sub1–
AMBG × Sub3 (RISK × Sub1 — RISK × Sub3) are the interaction of AMBG(RISK ) with Sub1-Sub3 dummy
variables. Call and Put measures are reported in Columns 1-5 and Columns 6-10, respectively. The sample period is
from January 2002 to December 2018. The options trading data is taken from OptionMetrics. All variables are defined
in Table B.1. All specifications include the trailing avergaes of the dependent variable (AvgDEP), AMBG(AvgAMBG)
and RISK (AvgRISK ). This allows to account for the persistence in the dependent variables, and explore the effect
of changes in AMBG and RISK relative to their trailing benchmarks. (Z) stands for a Z-Score adjustment. Firm
and date fixed effects are included in each specification. Standard errors are double clustered by firm and date, and
t-statistics are reported in parentheses below the coefficient estimates. Statistical significance at the 10%, 5%, and
1% level is indicated by *, **, and ***, respectively.

Panel A: Open Interest

COI(Z) POI(Z)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
t t+1 t+2 t+3 t+5 t t+1 t+2 t+3 t+5

AMBG(Z) × Sub1 -0.011∗∗∗ -0.012∗∗∗ -0.012∗∗∗ -0.013∗∗∗ -0.014∗∗∗ -0.011∗∗∗ -0.012∗∗∗ -0.012∗∗∗ -0.012∗∗∗ -0.013∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

AMBG(Z) × Sub2 -0.014∗∗∗ -0.014∗∗∗ -0.014∗∗∗ -0.015∗∗∗ -0.015∗∗∗ -0.015∗∗∗ -0.016∗∗∗ -0.016∗∗∗ -0.016∗∗∗ -0.016∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

AMBG(Z) × Sub3 -0.009∗∗∗ -0.010∗∗∗ -0.010∗∗∗ -0.010∗∗∗ -0.010∗∗∗ -0.011∗∗∗ -0.011∗∗∗ -0.012∗∗∗ -0.012∗∗∗ -0.012∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

RISK(Z) × Sub1 0.004∗ 0.006∗∗∗ 0.007∗∗∗ 0.008∗∗∗ 0.009∗∗∗ 0.020∗∗∗ 0.021∗∗∗ 0.021∗∗∗ 0.022∗∗∗ 0.022∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

RISK(Z) × Sub2 -0.005∗∗ -0.003 -0.001 -0.000 0.001 0.015∗∗∗ 0.016∗∗∗ 0.018∗∗∗ 0.018∗∗∗ 0.018∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

RISK(Z) × Sub3 -0.006∗∗∗ -0.006∗∗∗ -0.005∗∗∗ -0.005∗∗∗ -0.006∗∗∗ 0.011∗∗∗ 0.012∗∗∗ 0.013∗∗∗ 0.013∗∗∗ 0.013∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Firm FEs YES YES YES YES YES YES YES YES YES YES
Date FEs YES YES YES YES YES YES YES YES YES YES
Firm Cluster YES YES YES YES YES YES YES YES YES YES
Date Cluster YES YES YES YES YES YES YES YES YES YES

Observations 5,887,441 5,887,438 5,887,517 5,887,539 5,887,564 5,806,847 5,806,844 5,806,942 5,806,963 5,807,012

AdjR2 0.843 0.843 0.844 0.844 0.842 0.856 0.855 0.857 0.856 0.854
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Panel B: Volume

CVOL(Z) PVOL(Z)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
t t+1 t+2 t+3 t+5 t t+1 t+2 t+3 t+5

AMBG(Z) × Sub1 -0.031∗∗∗ -0.021∗∗∗ -0.020∗∗∗ -0.019∗∗∗ -0.018∗∗∗ -0.031∗∗∗ -0.021∗∗∗ -0.017∗∗∗ -0.017∗∗∗ -0.015∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

AMBG(Z) × Sub2 -0.044∗∗∗ -0.027∗∗∗ -0.022∗∗∗ -0.020∗∗∗ -0.020∗∗∗ -0.043∗∗∗ -0.026∗∗∗ -0.021∗∗∗ -0.018∗∗∗ -0.017∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

AMBG(Z) × Sub3 -0.044∗∗∗ -0.022∗∗∗ -0.015∗∗∗ -0.013∗∗∗ -0.011∗∗∗ -0.043∗∗∗ -0.022∗∗∗ -0.015∗∗∗ -0.012∗∗∗ -0.009∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

RISK(Z) × Sub1 0.147∗∗∗ 0.069∗∗∗ 0.043∗∗∗ 0.037∗∗∗ 0.030∗∗∗ 0.136∗∗∗ 0.066∗∗∗ 0.044∗∗∗ 0.036∗∗∗ 0.032∗∗∗

(0.01) (0.00) (0.00) (0.00) (0.00) (0.01) (0.00) (0.00) (0.00) (0.00)

RISK(Z) × Sub2 0.145∗∗∗ 0.060∗∗∗ 0.033∗∗∗ 0.024∗∗∗ 0.016∗∗∗ 0.139∗∗∗ 0.060∗∗∗ 0.036∗∗∗ 0.025∗∗∗ 0.018∗∗∗

(0.01) (0.00) (0.00) (0.00) (0.00) (0.01) (0.00) (0.00) (0.00) (0.00)

RISK(Z) × Sub3 0.123∗∗∗ 0.047∗∗∗ 0.024∗∗∗ 0.018∗∗∗ 0.014∗∗∗ 0.122∗∗∗ 0.052∗∗∗ 0.032∗∗∗ 0.025∗∗∗ 0.021∗∗∗

(0.01) (0.00) (0.00) (0.00) (0.00) (0.01) (0.00) (0.00) (0.00) (0.00)

Firm FEs YES YES YES YES YES YES YES YES YES YES
Date FEs YES YES YES YES YES YES YES YES YES YES
Firm Cluster YES YES YES YES YES YES YES YES YES YES
Date Cluster YES YES YES YES YES YES YES YES YES YES

Observations 6,008,137 5,940,699 5,924,982 5,910,826 5,884,918 5,922,273 5,857,357 5,841,742 5,828,234 5,802,097

AdjR2 0.400 0.409 0.408 0.404 0.395 0.369 0.373 0.371 0.367 0.359
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Table B.13: AMBG and other uncertainty proxies

This table reports the findings from daily panel regressions, in which call and put stock option open interest (Panel A),
trading volume (Panel B), and cumulative delta-hedged returns (Panel C) on trading day t, . . . , t + 5 are regressed
on trading day t’s ambiguity (AMBG), risk (RISK ), and other firm characteristics. In each panel, “Base” refers
to the main specification reported in the paper. “No uncertainty controls” is a specification that excludes RISK
and AvgRISK. “Full uncertainty controls” is a specification that includes RISK together with VOV, VOM, SKEW,
and KURT together with their rolling averages. For brevity, the table only reports the AMBG coefficients. The
sample period is from January 2002 to December 2018. The options trading data is taken from OptionMetrics. All
variables are defined in Table B.1. (Z) stands for a Z-Score adjustment. Firm and date fixed effects are included in
each specification. Standard errors are double clustered by firm and date, and t-statistics are reported in parentheses
below the coefficient estimates. Statistical significance at the 10%, 5%, and 1% level is indicated by *, **, and ***,
respectively.

Panel A: Open Interest

COI(Z) POI(Z)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
t t+1 t+2 t+3 t+5 t t+1 t+2 t+3 t+5

Base
AMBG(Z) -0.012∗∗∗ -0.012∗∗∗ -0.013∗∗∗ -0.013∗∗∗ -0.014∗∗∗ -0.014∗∗∗ -0.014∗∗∗ -0.014∗∗∗ -0.014∗∗∗ -0.015∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

No uncertainty controls

AMBG(Z) -0.012∗∗∗ -0.012∗∗∗ -0.013∗∗∗ -0.013∗∗∗ -0.014∗∗∗ -0.015∗∗∗ -0.016∗∗∗ -0.016∗∗∗ -0.016∗∗∗ -0.016∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Full uncertainty controls

AMBG(Z) -0.012∗∗∗ -0.012∗∗∗ -0.013∗∗∗ -0.013∗∗∗ -0.013∗∗∗ -0.014∗∗∗ -0.014∗∗∗ -0.014∗∗∗ -0.014∗∗∗ -0.014∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
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Panel B: Trading Volume

CVOL(Z) PVOL(Z)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
t t+1 t+2 t+3 t+5 t t+1 t+2 t+3 t+5

Base
AMBG(Z) -0.040∗∗∗ -0.023∗∗∗ -0.017∗∗∗ -0.016∗∗∗ -0.015∗∗∗ -0.039∗∗∗ -0.024∗∗∗ -0.018∗∗∗ -0.016∗∗∗ -0.013∗∗∗

(-16.88) (-16.03) (-15.07) (-14.06) (-13.78) (-15.32) (-14.28) (-14.36) (-13.88) (-11.92)

No uncertainty controls

AMBG(Z) -0.051∗∗∗ -0.028∗∗∗ -0.021∗∗∗ -0.019∗∗∗ -0.018∗∗∗ -0.049∗∗∗ -0.028∗∗∗ -0.021∗∗∗ -0.018∗∗∗ -0.015∗∗∗

(-19.73) (-17.48) (-16.02) (-15.08) (-14.27) (-18.09) (-15.67) (-14.94) (-14.44) (-13.24)

Full uncertainty controls

AMBG(Z) -0.041∗∗∗ -0.023∗∗∗ -0.018∗∗∗ -0.017∗∗∗ -0.016∗∗∗ -0.041∗∗∗ -0.023∗∗∗ -0.018∗∗∗ -0.015∗∗∗ -0.014∗∗∗

(-17.08) (-15.56) (-14.91) (-14.12) (-13.45) (-15.78) (-13.89) (-13.64) (-13.39) (-12.20)

Panel C: Cumulative delta-hedged returns

CCUMRET(Z) PCUMRET(Z)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
t t+1 t+2 t+3 t+5 t t+1 t+2 t+3 t+5

Base
AMBG(Z) -0.139∗∗∗ -0.175∗∗∗ -0.183∗∗∗ -0.183∗∗∗ -0.181∗∗∗ -0.193∗∗∗ -0.246∗∗∗ -0.284∗∗∗ -0.309∗∗∗ -0.341∗∗∗

(0.01) (0.01) (0.01) (0.01) (0.02) (0.01) (0.01) (0.01) (0.02) (0.02)

No uncertainty controls

AMBG(Z) -0.163∗∗∗ -0.206∗∗∗ -0.221∗∗∗ -0.224∗∗∗ -0.231∗∗∗ -0.216∗∗∗ -0.279∗∗∗ -0.323∗∗∗ -0.354∗∗∗ -0.393∗∗∗

(0.01) (0.01) (0.01) (0.01) (0.02) (0.01) (0.01) (0.01) (0.01) (0.02)

Full uncertainty controls

AMBG(Z) -0.142∗∗∗ -0.179∗∗∗ -0.188∗∗∗ -0.188∗∗∗ -0.188∗∗∗ -0.199∗∗∗ -0.253∗∗∗ -0.292∗∗∗ -0.318∗∗∗ -0.350∗∗∗

(0.01) (0.01) (0.01) (0.01) (0.02) (0.01) (0.01) (0.01) (0.02) (0.02)
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Table B.14: AMBG, VOM and VOV

This table reports the findings from daily panel regressions, in which call and put stock option open interest (Panel
A), trading volume (Panel B), and cumulative delta-hedged returns (Panel C) on trading day t, . . . , t + 5 are re-
gressed on trading day t’s ambiguity (AMBG), volatility-of-mean (VOM ), volatility-of-volatility (VOV ) and other
firm characteristics. There are two separate specifications in each panel based on VOM (“AMBG and VOM ”) and
VOV (“AMBG and VOV ”), controlling for their trailing averages. For brevity, the table only reports the AMBG,
VOM, and VOV coefficients. The sample period is from January 2002 to December 2018. The options trading data is
taken from OptionMetrics. All variables are defined in Table B.1. (Z) stands for a Z-Score adjustment. Firm and date
fixed effects are included in each specification. Standard errors are double clustered by firm and date, and t-statistics
are reported in parentheses below the coefficient estimates. Statistical significance at the 10%, 5%, and 1% level is
indicated by *, **, and ***, respectively.

Panel A: Open Interest

COI(Z) POI(Z)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
t t+1 t+2 t+3 t+5 t t+1 t+2 t+3 t+5

AMBG and VOM
AMBG(Z) -0.012∗∗∗ -0.012∗∗∗ -0.012∗∗∗ -0.013∗∗∗ -0.013∗∗∗ -0.015∗∗∗ -0.015∗∗∗ -0.015∗∗∗ -0.016∗∗∗ -0.016∗∗∗

(-12.43) (-12.77) (-13.12) (-13.35) (-13.83) (-13.91) (-14.18) (-14.63) (-14.80) (-15.29)

VOM(Z) 0.003∗∗∗ 0.004∗∗∗ 0.004∗∗∗ 0.005∗∗∗ 0.005∗∗∗ 0.010∗∗∗ 0.010∗∗∗ 0.011∗∗∗ 0.011∗∗∗ 0.011∗∗∗

(3.87) (5.11) (5.97) (6.39) (6.80) (12.62) (13.08) (13.76) (13.88) (13.79)

AMBG and VOV
AMBG(Z) -0.012∗∗∗ -0.012∗∗∗ -0.013∗∗∗ -0.013∗∗∗ -0.014∗∗∗ -0.015∗∗∗ -0.015∗∗∗ -0.016∗∗∗ -0.016∗∗∗ -0.016∗∗∗

(-12.59) (-12.94) (-13.30) (-13.54) (-14.03) (-14.06) (-14.33) (-14.79) (-14.96) (-15.45)

VOV(Z) -0.004∗∗∗ -0.004∗∗∗ -0.004∗∗∗ -0.005∗∗∗ -0.005∗∗∗ -0.001∗∗ -0.001∗∗ -0.001∗∗ -0.001∗∗∗ -0.002∗∗∗

(-9.08) (-9.01) (-9.22) (-9.49) (-9.75) (-2.50) (-2.44) (-2.52) (-2.65) (-3.17)
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Panel B: Trading volume

CVOL(Z) PVOL(Z)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
t t+1 t+2 t+3 t+5 t t+1 t+2 t+3 t+5

AMBG and VOM
AMBG(Z) -0.049∗∗∗ -0.027∗∗∗ -0.021∗∗∗ -0.018∗∗∗ -0.017∗∗∗ -0.048∗∗∗ -0.027∗∗∗ -0.020∗∗∗ -0.017∗∗∗ -0.015∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

VOM(Z) 0.100∗∗∗ 0.038∗∗∗ 0.023∗∗∗ 0.019∗∗∗ 0.014∗∗∗ 0.095∗∗∗ 0.038∗∗∗ 0.024∗∗∗ 0.018∗∗∗ 0.016∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

AMBG and VOV
AMBG(Z) -0.050∗∗∗ -0.027∗∗∗ -0.021∗∗∗ -0.019∗∗∗ -0.017∗∗∗ -0.049∗∗∗ -0.027∗∗∗ -0.020∗∗∗ -0.017∗∗∗ -0.015∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

VOV(Z) 0.020∗∗∗ 0.005∗∗∗ 0.001 0.000 -0.000 0.022∗∗∗ 0.007∗∗∗ 0.003∗∗∗ 0.002∗∗ 0.001
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Panel C: Cumulative delta-hedged returns

CCUMRET(Z) PCUMRET(Z)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
t t+1 t+2 t+3 t+5 t t+1 t+2 t+3 t+5

AMBG and VOM
AMBG(Z) -0.160∗∗∗ -0.202∗∗∗ -0.216∗∗∗ -0.220∗∗∗ -0.225∗∗∗ -0.215∗∗∗ -0.277∗∗∗ -0.320∗∗∗ -0.350∗∗∗ -0.389∗∗∗

(-22.95) (-22.15) (-20.03) (-17.53) (-15.00) (-25.95) (-25.02) (-24.38) (-23.76) (-21.44)

VOM(Z) 0.289∗∗∗ 0.374∗∗∗ 0.439∗∗∗ 0.477∗∗∗ 0.546∗∗∗ 0.296∗∗∗ 0.380∗∗∗ 0.439∗∗∗ 0.477∗∗∗ 0.541∗∗∗

(36.46) (39.15) (41.07) (40.67) (39.49) (41.89) (47.15) (47.56) (45.93) (44.82)

AMBG and VOV
AMBG(Z) -0.162∗∗∗ -0.205∗∗∗ -0.220∗∗∗ -0.224∗∗∗ -0.231∗∗∗ -0.216∗∗∗ -0.278∗∗∗ -0.322∗∗∗ -0.352∗∗∗ -0.391∗∗∗

(-23.33) (-22.43) (-20.22) (-17.64) (-15.10) (-26.09) (-25.17) (-24.46) (-23.81) (-21.45)

VOV(Z) 0.026∗∗∗ 0.031∗∗∗ 0.050∗∗∗ 0.059∗∗∗ 0.076∗∗∗ 0.033∗∗∗ 0.053∗∗∗ 0.070∗∗∗ 0.086∗∗∗ 0.107∗∗∗

(5.50) (5.31) (7.77) (8.01) (8.78) (7.90) (10.34) (11.98) (13.00) (13.41)
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Table B.15: AMBG and dispersion of analyst forecast (DAF )

This table reports the findings from daily panel regressions, in which call and put stock option open interest (Panel
A), trading volume (Panel B), and cumulative delta-hedged returns (Panel C) on trading day t, . . . , t+5 are regressed
on trading day t’s ambiguity (AMBG), risk (RISK ) the dispersion of analyst forecasts (DAF ) and other firm char-
acteristics. For brevity, the table only reports the AMBG, RISK, and DAF coefficients. The sample period is from
January 2002 to December 2018. The options trading data is taken from OptionMetrics. All variables are defined in
Table B.1. All specifications include the trailing avergaes of the dependent variable (AvgDEP), AMBG(AvgAMBG)
and RISK (AvgRISK ). This allows to account for the persistence in the dependent variables, and explore the effect
of changes in AMBG and RISK relative to their trailing benchmarks. (Z) stands for a Z-Score adjustment. Firm
and date fixed effects are included in each specification. Standard errors are double clustered by firm and date, and
t-statistics are reported in parentheses below the coefficient estimates. Statistical significance at the 10%, 5%, and
1% level is indicated by *, **, and ***, respectively.

Panel A: Open Interest

COI(Z) POI(Z)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
t t+1 t+2 t+3 t+5 t t+1 t+2 t+3 t+5

AMBG(Z) -0.012∗∗∗ -0.012∗∗∗ -0.013∗∗∗ -0.013∗∗∗ -0.014∗∗∗ -0.014∗∗∗ -0.014∗∗∗ -0.014∗∗∗ -0.014∗∗∗ -0.015∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

RISK(Z) -0.004∗∗∗ -0.003∗∗ -0.001 -0.001 -0.000 0.015∗∗∗ 0.016∗∗∗ 0.017∗∗∗ 0.017∗∗∗ 0.017∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

DAF(Z) 0.005∗∗∗ 0.006∗∗∗ 0.006∗∗∗ 0.006∗∗∗ 0.006∗∗∗ 0.005∗∗∗ 0.005∗∗∗ 0.005∗∗∗ 0.005∗∗∗ 0.005∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
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Panel B: Trading volume

CVOL(Z) PVOL(Z)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
t t+1 t+2 t+3 t+5 t t+1 t+2 t+3 t+5

AMBG(Z) -0.040∗∗∗ -0.023∗∗∗ -0.018∗∗∗ -0.017∗∗∗ -0.016∗∗∗ -0.039∗∗∗ -0.023∗∗∗ -0.018∗∗∗ -0.015∗∗∗ -0.013∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

RISK(Z) 0.137∗∗∗ 0.058∗∗∗ 0.033∗∗∗ 0.026∗∗∗ 0.020∗∗∗ 0.131∗∗∗ 0.059∗∗∗ 0.037∗∗∗ 0.029∗∗∗ 0.024∗∗∗

(0.01) (0.00) (0.00) (0.00) (0.00) (0.01) (0.00) (0.00) (0.00) (0.00)

DAF(Z) 0.008∗∗∗ 0.008∗∗∗ 0.007∗∗∗ 0.008∗∗∗ 0.007∗∗∗ 0.010∗∗∗ 0.011∗∗∗ 0.011∗∗∗ 0.011∗∗∗ 0.011∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Panel C: Cumulative delta-hedged returns

CCUMRET(Z) PCUMRET(Z)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
t t+1 t+2 t+3 t+5 t t+1 t+2 t+3 t+5

AMBG(Z) -0.139∗∗∗ -0.175∗∗∗ -0.183∗∗∗ -0.183∗∗∗ -0.181∗∗∗ -0.193∗∗∗ -0.246∗∗∗ -0.284∗∗∗ -0.309∗∗∗ -0.341∗∗∗

(0.01) (0.01) (0.01) (0.01) (0.02) (0.01) (0.01) (0.01) (0.02) (0.02)

RISK(Z) 0.311∗∗∗ 0.409∗∗∗ 0.500∗∗∗ 0.551∗∗∗ 0.662∗∗∗ 0.314∗∗∗ 0.435∗∗∗ 0.514∗∗∗ 0.578∗∗∗ 0.680∗∗∗

(0.01) (0.02) (0.02) (0.02) (0.02) (0.01) (0.01) (0.02) (0.02) (0.02)

DAF(Z) -0.000 0.005 0.015∗∗ 0.020∗∗ 0.038∗∗∗ 0.004∗ 0.004 0.005 0.008 0.013
(0.00) (0.00) (0.01) (0.01) (0.01) (0.00) (0.00) (0.01) (0.01) (0.01)
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Table B.16: AMBG controlling for market AMBG and VIX

This table reports the findings from daily panel regressions, in which call and put stock option open interest (Panel
A), trading volume (Panel B), and cumulative delta-hedged returns (Panel C) on trading day t, . . . , t+5 are regressed
on trading day t’s ambiguity (AMBG), risk (RISK ) and other firm characteristics controlling for changes in market
ambiguity (∆MktAMBG) and changes in VIX (∆VIX ). For brevity, the table only reports the AMBG, RISK,
MktAMBG and VIX coefficients. The sample period is from January 2002 to December 2018. The options trading
data is taken from OptionMetrics. All variables are defined in Table B.1. (Z) stands for a Z-Score adjustment. Firm
and day-of-the-week fixed effects are included in each specification. Standard errors are double clustered by firm and
date, and t-statistics are reported in parentheses below the coefficient estimates. Statistical significance at the 10%,
5%, and 1% level is indicated by *, **, and ***, respectively.

Panel A: Open Interest

COI(Z) POI(Z)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
t t+1 t+2 t+3 t+5 t t+1 t+2 t+3 t+5

AMBG(Z) -0.009∗∗∗ -0.010∗∗∗ -0.010∗∗∗ -0.011∗∗∗ -0.011∗∗∗ -0.025∗∗∗ -0.025∗∗∗ -0.025∗∗∗ -0.025∗∗∗ -0.025∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

RISK(Z) -0.020∗∗∗ -0.019∗∗∗ -0.017∗∗∗ -0.016∗∗∗ -0.015∗∗∗ 0.032∗∗∗ 0.033∗∗∗ 0.034∗∗∗ 0.035∗∗∗ 0.034∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

∆MktAMBG (Z) -0.001 -0.001 -0.001 -0.001 -0.001 0.001∗ 0.001∗ 0.001∗ 0.001∗ 0.001∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

∆VIX (Z) 0.008∗∗∗ 0.008∗∗∗ 0.008∗∗∗ 0.008∗∗∗ 0.008∗∗∗ -0.007∗∗∗ -0.006∗∗∗ -0.006∗∗∗ -0.006∗∗∗ -0.006∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
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Panel B: Trading volume

CVOL(Z) PVOL(Z)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
t t+1 t+2 t+3 t+5 t t+1 t+2 t+3 t+5

AMBG(Z) -0.036∗∗∗ -0.023∗∗∗ -0.018∗∗∗ -0.016∗∗∗ -0.015∗∗∗ -0.042∗∗∗ -0.028∗∗∗ -0.022∗∗∗ -0.020∗∗∗ -0.017∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

RISK(Z) 0.110∗∗∗ 0.047∗∗∗ 0.025∗∗∗ 0.019∗∗∗ 0.013∗∗∗ 0.125∗∗∗ 0.062∗∗∗ 0.041∗∗∗ 0.032∗∗∗ 0.027∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.01) (0.00) (0.00) (0.00) (0.00)

∆MktAMBG (Z) -0.000 -0.001 -0.001 -0.000 0.000 0.000 0.001 -0.000 0.001 0.000
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

∆VIX (Z) 0.018∗∗∗ 0.008∗∗∗ 0.006∗∗∗ 0.005∗∗∗ 0.004∗∗ -0.004∗∗ 0.001 -0.000 0.001 0.000
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Panel C: Cumulative delta-hedged returns

CCUMRET(Z) PCUMRET(Z)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
t t+1 t+2 t+3 t+5 t t+1 t+2 t+3 t+5

AMBG(Z) -0.159∗∗∗ -0.227∗∗∗ -0.274∗∗∗ -0.303∗∗∗ -0.347∗∗∗ -0.325∗∗∗ -0.464∗∗∗ -0.562∗∗∗ -0.642∗∗∗ -0.748∗∗∗

(0.01) (0.02) (0.03) (0.03) (0.04) (0.01) (0.02) (0.03) (0.03) (0.04)

RISK(Z) 0.431∗∗∗ 0.647∗∗∗ 0.736∗∗∗ 0.857∗∗∗ 1.057∗∗∗ 0.709∗∗∗ 0.942∗∗∗ 1.147∗∗∗ 1.290∗∗∗ 1.514∗∗∗

(0.03) (0.08) (0.08) (0.09) (0.10) (0.04) (0.05) (0.07) (0.07) (0.08)

∆MktAMBG (Z) 0.008 0.040∗ -0.029 0.002 -0.038 0.005 -0.056∗∗∗ -0.053∗∗ -0.076∗∗ -0.078∗∗

(0.02) (0.02) (0.03) (0.03) (0.04) (0.02) (0.02) (0.03) (0.03) (0.04)

∆VIX (Z) 1.111∗∗∗ 0.975∗∗∗ 1.006∗∗∗ 1.077∗∗∗ 1.052∗∗∗ 0.311∗∗∗ 0.696∗∗∗ 0.682∗∗∗ 0.729∗∗∗ 0.785∗∗∗

(0.05) (0.07) (0.08) (0.08) (0.11) (0.05) (0.05) (0.07) (0.08) (0.09)
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Abstract

We use abnormal undercutting activity (QIDRes) to measure informed trading risk, reflect-

ing liquidity-providing algorithms competing less to fill marketable orders when adverse selec-

tion exposure rises. Despite its simple construction, when examined around information events,

QIDRes behaves similarly to existing measures of informed trading intensity/probability whose

constructions are complex. QIDRes predicts arrivals and magnitudes of imminent information

events. Moreover, episodes of high QIDRes coincide with weaker subsequent price reversals,

increased accumulation/covering of short interest, and increased informed institutional trades.

QIDRes from prior quarters positively predicts monthly stock returns, especially among stocks

with tighter short sale constraints. Since QIDRes is orthogonal to stock liquidity and is not a

persistent stock characteristic, we attribute its return predictability to limits to arbitrage.
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1 Introduction

Informed trading is a key concept in various areas of financial economics including market efficiency,

market structure, and the cost of capital. However, empirically measuring informed trading risk is

difficult since informed traders conceal their presence by endogenously adjusting trading behavior

with market conditions (Kyle (1985), Anand, Irvine, Puckett, and Venkataraman (2012)). This

reality makes it difficult for researchers to empirically differentiate informed trading from other

market conditions like liquidity (Ahren (2020), Duarte and Young (2009)). In this paper we propose

an easy-to-compute, intuitive measure of nondirectional informed trading risk that is orthogonal

to liquidity, performs at least as well as prominent existing measures in empirical tests, and only

requires trades and quotes data. Importantly, our measure is computable at the daily, or even finer,

frequencies for securities traded in any modern limit order market.

Our approach exploits the intuition that liquidity providers will compete less to trade against

marketable orders they perceive to be informed. Specifically, we expect that the phenomena known

as undercutting runs, or just runs (Foley, Dyhrberg, and Svec (2022), Foley, Meling, and Ødegaard

(2021)), will decrease when informed trading risk is high and that this change in behavior will

be observable in the trade and quote data. Undercutting refers to a trader using trivial price

improvement to get their order to the front of the limit order queue. Undercutting runs occur when

multiple trading algorithms repeatedly undercut each other as they compete to provide liquidity

to an expected upcoming marketable order. In modern markets most liquidity providers have no

affirmative obligation to provide liquidity in the face of informed or “toxic” order flow—liquidity

provision that would lead them to incur losses ((Glosten and Milgrom (1985), Menkveld (2013)).

Consequently, when informed trading risk is high, the willingness to “undercut” rivals will decrease,

or disappear, reducing both the number and length of undercutting runs.1

The existing empirical literature on undercutting has primarily relied on proprietary account

level data (e.g. Foley et al. (2021), Foley et al. (2022)) to identify runs. However, we observe

that the nature of undercutting runs gives rise to patterns in the trades and quotes data that are

1Importantly, liquidity providing algorithms operate with inventory holding horizons as short as a few seconds
(Conrad and Wahal (2020)). Hence, when dodging directional informed flow expected to persist beyond these holding
horizons, they limit providing liquidity, and hence undercutting, on both sides of the market to avoid unwanted
inventory accumulation. Thus, despite the directional nature of informed trading, liquidity-providing algorithms
react to increased informed trading risk by undercutting less on both sides of the market. Put differently, abnormally
low undercutting reveals the extent of liquidity providers’ concerns about non-directional informed trading risk.
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identifiable without proprietary data. Specifically, the hallmark of a run is a sequence of single tick

improvements in the best quoted price on one side of the market followed by a sudden drop back to

the pre-run prices as the incoming marketable order executes the quote provided by the winner of

the undercutting run. Empirically, this pattern can be analyzed by studying the difference between

NBBO quote improvements and trade driven NBBO quote deteriorations. This leads us to measure

undercutting activity by standardizing this difference at the stock-day level.

Specifically, our measure of undercutting, the QID ratio, reflects the total number of NBBO

quote improvements observed on a given stock-day minus the corresponding number of trade-driven

NBBO quote deteriorations on that same day, all divided by the sum of these two quantities. The

construction of QID imposes boundaries of −1 and 1.2 QID moving closer to 1 signifies increases

in undercutting runs.

We establish the validity of QID as an undercutting measure by documenting its inverse rela-

tionship with undercutting costs. First, we exploit the exogenous change in the costs of undercutting

driven by the SEC’s Tick Size Pilot program (TSP). By temporarily raising the tick size from 1¢ to

5¢ for some stocks, the TSP quintupled a major component of undercutting costs (Werner, Rindi,

Buti, and Wen (2022)). In standard difference-in-difference analysis, we find this exogenous increase

in undercutting costs at TSP implementation reduced QID by about 0.44; whereas the TSP con-

clusion virtually mirrored the implementation results where QID increased by an average of 0.42.3

Second, we exploit the positive impact of stock splits and the negative impact stock reverse splits

on the costs of undercutting as reflected by relative tick sizes, i.e., 1¢ divided by share price. We

find that QID significantly falls after stock splits, but significantly rises after stock reverse splits.

Collectively, these findings highlight a strong inverse relationship between the costs of undercutting

and QID, bolstering our interpretation of QID as a measure of undercutting activity.

We address two additional issues before employing QID to capture informed trading risk.

First, prior literature demonstrates that informed trading risk measures tend to conflate informed

trading and liquidity effects (Duarte and Young (2009), Ahren (2020)). Thus, QID could simply

2Because (1) we exclude best quote deteriorations due to limit order cancellations and (2) executions of marketable
orders likely lead to best quote deteriorations, we expect QID to be slightly negative in the absence of undercutting.

3Unlike the TSP’s heterogeneous effects on many other outcomes conditional on how binding the 5¢ tick was,
its effect on QID are fairly homogeneous. Additionally, our analysis satisfies the heuristic hurdles when re-using
experiments as all t-statistics range between 9–38, multiples of thresholds proposed by Heath, Ringgenberg, Samadi,
and Werner (2020).
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be capturing variations in liquidity that could also affect the willingness of a liquidity provider to

undercut. In fact, Figure 2 documents a positive association between QID and stock illiquidity,

measured by relative quoted bid-ask spread.4 Second, the contributions of informed trading risk

and liquidity to the variation in QID may vary in the cross-section. Thus, we must account for

stock-specific effects to arrive at a measure that is comparable across stocks.

We address both concerns by orthogonalizing QID to liquidity and then standardizing it to

make it comparable across stocks. Crucially, adopting this approach distinguishes our measure of

informed trading risk from all existing measures, other relevant mircostructure outcomes, or stock

characteristics. First, for each quarter and each stock, we fit a regression of daily QID on time-

weighted relative bid-ask spread to control for liquidity conditions. Second, we apply the coefficients

from the first step to the following quarter’s realizations to produce estimates of the unexpected

(residual)QID, i.e., undercutting activity that is orthogonal to liquidity. Next, we scale these stock-

specific estimates of liquidity adjusted unexpected QID by the standard deviation of observed QID

from the prior quarter. Lastly we multiply the resulting ratio by −1 to produce a positive, instead of

inverse, measure of informed trading risk. We dub the resulting measure QIDRes. Consistent with

its construction, QIDRes satisfies two properties at the daily frequencies (1) it is distributed with

a mean and a standard deviation close to 0 and 1, respectively; (2) it has nearly zero correlation

with relevant contemporaneous mictostructure and liquidity outcomes such as quoted, effective,

and realized spreads; price impact; volatility; and trading volume. This lack of correlation extends

with respect to common measures of liquidity such as quoted spreads, effective spreads, and lambda

as well as stock characteristics when we aggregate measures at quarterly frequencies.

We examine the behavior ofQIDRes around multiple information events known to be associated

with informed trading. We also compare it’s behavior to that of other prominent measures of

informed trading such as the Informed Trading Intensity (ITI) measures of Bogousslavsky, Fos,

and Muravyev (2023); Probability of Informed Trading (PIN) measures—see Duarte, Hu, and

Young (2020) for a discussion of the various PIN-based measures; and the multi-market information

4Relative quoted spread is particularly relevant for undercutting in U.S. equity markets. Dollar bid-ask spread
together with the 1¢ tick size reflect the number of 1-¢-apart price levels potentially available for undercutting runs.
However, the value per share of the stock, usually approximated by the quote midpoint in microstructure applications,
together with the minimum lot size of 100 shares, required for any effective undercutting, reflect the minimum dollar
value transferred per transaction as an undercutting run’s winner trades. The minimum tick and lot size are fixed
across all stocks, and relative bid-ask spread, defined as the ratio of dollar bid-ask spread to NBBO midpoint, controls
for the two remaining relevant factors.
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asymmetry (MIA) measure of Johnson and So (2018).

We document that around earnings announcements, unscheduled press releases, and news ar-

rivals there is a significant spike in QIDRes that takes up to 10 days to rebound. This is a pattern

we also observe with the other measures of informed trading risk. Moreover, we find that the

magnitude and persistence of the spikes in QIDRes are related to the size of the the post-event

returns: information events with larger increases in QIDRes are followed by larger post-event ab-

solute returns; and for such events, post-event QIDRes rebounds more slowly. Finally, we test

the predictive power of QIDRes for informational events, exploring the notion that market makers

may learn from order flow about upcoming information events (Chae (2005)). In fact, we find that

increases in QIDRes predict imminent arrivals of unscheduled information events.

We next provide evidence inconsistent with QIDRes solely capturing ‘sniping risk.’ The litera-

ture pioneered by Budish, Cramton, and Shim (2015) shows in continuous-time limit order markets

liquidity providers face adverse selection costs due to sniping risk, rather than their information

disadvantages about fundamental values.5 Relevant for our analysis is the intuition that liquidity

providers should become reluctant to undercut when sniping risk rises due public news arrivals,

leading to increases in QIDRes around major information arrivals. To address this, instead of only

relying on information events, we link QIDRes to more direct sources of informed trading.

First, we explore the relation between QIDRes and changes in short interest. A large literature

documents that changes in short interest are strong predictors of future stock performance (see, e.g.,

Boehmer, Huszar, and Jordan (2010), Dixon and Kelley (2022)). Consistent with QIDRes being

linked to informed trading, we document that QIDRes is significantly higher during periods with

large absolute changes in short interest, even after excluding periods that overlap with information

events. Second, we examine the behavior of QIDRes around stock-days with informed mutual-

fund trades, as identified by Barardehi, Da, and Warachka (2022). Again, we document significantly

larger QIDRes on informed mutual fund trading days than on days without such trading.6

We also provide evidence suggesting that QIDRes is not simply reflecting inventory manage-

5With differences in order processing speeds across traders, the arrival of public news leaves some resting limit
orders of slow trades stale not because of information asymmetries but because these traders cannot cancel their
orders fast enough. In turn, faster traders benefit from picking off (sniping) these stale orders at the loss of slow
traders (also see Menkveld and Zoican (2017)).

6We document similar behavior for both short interest and informed trading days with most other informed trading
intensity/probability measures.
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ment concerns of liquidity providers. Due to capital constraints, liquidity providers with unbalanced

inventories avoid accumulating additional inventory or charge a premium to do so (Comerton-Forde,

Hendershott, Jones, Moulton, and Seasholes (2010)). This can translate to reduced undercutting,

i.e., higher QIDRes, as such liquidity providers demand greater compensation for providing liq-

uidity. As demonstrated by Hendershott and Menkveld (2014), these inventory dynamics give rise

to short-term price pressure followed by price reversals. Thus, if QIDRes were reflecting inventory

management concerns then stock-days with higher QIDRes would be associated with stronger

price reversals. However, we find the exact opposite occurs. Stock-days with higher QIDRes are

followed by weaker reversals which further suggests informed trading. Moreover, we show that

these reversals patterns persist when we control for realized volatility—in fact, QIDRes is nearly

orthogonal to contemporaneous realized volatility

The inverse link between QIDRes and subsequent reversals is also at odds with increased un-

dercutting reflecting the increased use of limit orders by informed investors. Traders possessing a

positive (negative) signal may undercut more on the bid (ask) side, instead of using marketable

buy (sell) orders that would reveal their trading intentions. If this mechanism underlies the prim-

itive motive for undercutting, then price reversals should be weaker following abnormally high

undercutting, i.e., when QIDRes is low, the exact opposite of our findings.

We next document asset pricing implications of QIDRes. We first demonstrate that long-short

portfolios formed using QIDRes from the prior two quarters earlier produce statistically significant

risk-adjusted returns of over 30 basis points per month. This finding extends the one-month return

predictability of informed trading intensity measures, documented by Bogousslavsky et al. (2023),

to longer horizons. Our additional asset pricing tests involve fixed-effect panel regressions that

regress monthly excess returns on lagged QIDRes and stock characteristics, including illiquidity

measures. We find positive associations between monthly expected stock returns and QIDRes

from the preceding two quarters, i.e., stocks with higher expected informed trading risk have

higher returns. We highlight the incremental explanatory power of QIDRes for returns, relative

to existing informed trading intensity measures, in “horse race” regressions. These regressions,

in addition to QIDRes from the preceding two quarters, include subsets of ten corresponding

alternative measures as independent variables. Not only does QIDRes maintain its explanatory

power for expected returns when we control for existing measures, but QIDRes is the only measure
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that significantly predicts future returns across all specifications.

Return predictability of informed trading risk as reflected in QIDRes cannot be interpreted in

the context of existing theories such as Easley and O’Hara (2004), interpreting informed trading

risk as a stock characteristic, or Duarte and Young (2009), arguing that informed trading risk is

correlated with illiquidity. Among unique features of QIDRes are (1) it does not constitute a

stock characteristic; and (2) it is orthogonal to stock illiquidity. Specifically, QIDRes exhibits no

temporal persistence but rather displays modest mean reversion, if anything. Moreoever, reflecting

its construction, QIDRes should be orthogonal to persistent stock characteristics such as illiquidity,

which we confirm empirically: in the cross-section, QIDRes is minimally correlated with a host of

stock characteristics as well as existing informed trading intensity proxies. For example, highlighting

the contrast between QIDRes and existing measures, the average absolute pairwise correlation

coefficient between QIDRes and five illiquidity measures is only 0.02; whereas the analogue for

ITI and PIN measures is 0.15, with individual pairwise correlation coefficients as high as 0.53.

We interpret return predictability of QIDRes in the context of limits to arbitrage. Short sellers

who systematically investigate and trade on negative information face short sale constraints, while

trading on positive information is not subject to such constraints. To these ends, as Bogousslavsky

et al. (2023) also argue, an informed trading risk measure is more likely to capture trading motivated

by positive information, rather than negative information. Hence, increases in measures of informed

trading risk such as QIDRes should predict higher future returns. Our empirical findings confirm

this. When we control for short sale constraints using security lending fees indeed we observe that

the return predictability of QIDRes is stronger among stocks with tighter short sale constraints.

2 Linking Undercutting Runs to Informed Trading Risk

We next provide a simple framework that formally links the risk of trading against informed in-

vestors from liquidity providers’ perspectives to their tendencies to participate undercutting runs.

Consider the setup of a simple one period rational expectation equilibrium model based off of

Glosten and Milgrom (1985). An asset takes the equally likely value of 0 or 1. The fraction π

of liquidity demanders are informed and know the true value of the asset only buying when the

the value equals 1 and only selling when the value equals 0. π captures informed trading risk in
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the market. The remaining 1− π fraction of liquidity demanders are uninformed and buy and sell

with equal probability. Liquidity providers come in two types: sophisticated and unsophisticated.

Unsophisticated liquidity providers, denoted ULPs, are passive, competitive, and set prices equal

to the conditional expected value of the asset. Sophisticated liquidity providers, denoted SLPs,

pay a cost c which will, with probability ρ inform them about whether the next trade to arrive is

informed or uninformed and on which side of the market the trade will arrive. It does not inform

them about the arrival time of the upcoming trade which is random.7 There are m SLP s where

the value m is determined in equilibrium such that the expected profit associated with being an

SLP is equal to the cost c. The likelihood that at least one of the m SLPs receives a signal is

ϕ = 1− (1− ρ)m.

If a SLP receives a signal that an upcoming trade is informed, the SLP will simply sit out and

not post any quotes allowing the ULP s to interact with the incoming informed trade. If no SLP

receives a signal then all SLPs sit out again allowing the ULP s to interact with the upcoming

trade. However, if an SLP receives a signal that the upcoming trade is uninformed, they will

undercut the existing quote on that side of the market. The other SLPs, whether they receive a

signal or not, will observe this quote improvement and will infer that a signal has been received

and will submit their own undercutting orders and an undercutting run will ensue.8 This behavior

is outlined in the outcome tree in Figure 1.

From the outcome tree it is straightforward to see that the probability of a run, which can be

thought of as the prevalence of runs in that market, is the probability that at least one SLP receives

a signal, ϕ, multiplied by the probability that the next trade to arrive is uninformed, (1 − π) as

shown in 1.

7The cost c can be thought of as the cost of investing in the capacity to process, analyze, and respond quickly
to information based in order flow. As discussed in greater detail in A.1 the exact arrival time of the next trade to
arrive is random and follows an exponential distribution with arrival rate parameter λ.

8The assumption that all SLPs can infer the signals of others via monitoring quote updates could be relaxed
such that only those SLPs receiving a signal engage in the undercutting run without changing any of the key
inference. In this case ϕ could be redefined to be the probability that at least two SLPs receive a signal ϕ =
1− (1− ρ)m −mρ(1− ρ)m−1, and all inference remains exactly the same since in both cases ϕ is increasing in both
m and ρ. Additionally the profit to undercutting is random, since the arrival of the uninformed trade is random
and so it is unclear exactly when during the run the uninformed trade will arrive. However, given that SLP s know
the arrival rate of trades, they can compute the expected time during an undercutting run a trade will arrive and
so can compute the expected profit of a run that is earned by the winning quote provider, which we denote Π. The
likelihood that a given SLP wins the undercutting run is 1

m
, so expected profits to undercutting are Π

m
. For this

market to be in equilibrium it must be the case that c = Π
m

which implies that the number of SLP s is m = Π
c
.
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Figure 1. Informed Trading Signal Arrivals and SLPs’ Undercutting Choices.
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P (UndercuttingRun) = ϕ(1− π). (1)

The derivative of equation 1 with respect to informed trading risk is δP (UndercuttingRun)
δπ = −ϕ,

which is always less than zero. Thus, when informed trading risk is higher - i.e. π is larger -

undercutting diminishes confirming the inverse link between the prevalence of undercutting and

informed trading. We present the equilibrium outcomes and comparative statics for the model in

Appendix A.1, showing that liquidity gets worse as undercutting risk increases. Our analysis is

consistent with empirical findings in the literature (e.g.,Foley et al. (2021) and Foley et al. (2022)).

This occurs because undercutting exacerbates adverse selection by preventing uninformed trades

from interacting with ULP s who set posted quotes.
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3 Related Literature

In this section, we link our paper’s contributions to the existing literature. We contribute by

developing an informed trading risk measure that is computed using aggregate frequencies of best

quote improvements and deteriorations. This simple construction offers several appealing features

relative to existing measures: Our measures (1) are implementable for securities traded in any

modern limit order market; (2) do not require structural estimations as in, e.g., Easley, Hvidkjaer,

and O’Hara (2002); (3) do not require hand-collected data and computationally demanding data-

driven techniques as in Bogousslavsky et al. (2023); and (4) do not require significant trading

activity in corresponding derivatives markets as in Johnson and So (2018).

Our methodology builds on the literature on order placement, including undercutting, strategies

in modern limit order markets. Hasbrouck and Saar (2013) introduced the notion of ‘strategic runs’

to describe a sequence of order submission/cancellations by an individual trader. In this context,

strategic runs that end with a trade may resemble successful undercutting efforts of an individual

trader (Chordia and Miao (2020)). Bringing this idea to the market level, Foley et al. (2021) and

Foley et al. (2022) directly examine undercutting ‘runs’ by identifying sequences of quote improve-

ments, reflecting order submissions by multiple traders, that end with a trade. We posit that,

in aggregate market data, best-quote improvements tend to capture undercutting efforts; whereas

best-quote deteriorations due to trades tend to capture conclusions of undercutting runs. We mea-

sure aggregate undercutting intensity using quote improvements minus quote deteriorations at the

stock-day level. Intuitively, exposure to adverse-selection risk due to information asymmetry lowers

liquidity providers’ willingness to undercut, leading us to propose abnormally low undercutting as

a new measure of increased informed trading risk.

We also provide new evidence relevant for the debate about asset pricing implications of informed

trading as QIDRes from two prior quarters predicts monthly returns. Easley and O’Hara (2004)

predict more frequent informed trading commands higher expected stock returns, with Easley et al.

(2002), Kelly and Ljungqvist (2012), and Derrien and Kecskés (2013) providing supportive evidence

in different settings. Hughes, Liu, and Liu (2007) and Petacchi (2015), respectively, link more fre-

quent informed trading to higher cost of capital and higher cost of equity. However, Lambert,

Leuz, and Verrecchia (2012) predict these links only exist in noncompetitive capital markets, with
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Armstrong, Taylor, Core, and Verrecchia (2011) providing supportive empirical evidence. In con-

trast, Wang (1993) posits that increased presence of informed investors reduces the cost of capital.

Relatedly, Duarte and Young (2009) show that the ability of Easley et al. (2002)’s PIN measures

to explain expected returns reflects the cross-sectional variation in liquidity, rather than that in

prevalence of informed trading. Because, our measure of informed trading risk is unrelated to

stock liquidity and does not constitute a persistent stock characteristic, we attribute its return

predictability to limits to arbitrage such as short sale constraints.

4 Data and Methodology

4.1 Data

Our main sample runs from January 2010 thought December 2019 and includes NMS-listed common

stocks whose share prices were at least $5 at the end of the preceding month. We obtain intraday

quote and trade information from Daily TAQ; daily microstructure outcomes from WRDS Intraday

Indicators; daily and monthly price and trade information from Daily and Monthly CRSP, respec-

tively; Book-value information and earnings announcements dates from COMPUSTAT; earnings

surprise scores from I/B/E/S; and news information from Ravenpack.

We construct national best bid and ask prices (NBBOs), from 09:45am to 3:45pm each day,

following Holden and Jacobsen (2014) by merging Daily TAQ’s NBBO and Quote files that are

then matched with trades in the same millisecond obtained from Daily TAQ’s Trade files. Our

daily undercutting measure, QIDjt, divides the difference between the number of best quote im-

provements, on either bid or ask side, and the number of trade-driven best quote deterioration, on

either bid or ask side, by the total number of such NBBO updates for stock j on day t. We flag a

quote deterioration as trade-driven if it occurs no later than 10 milliseconds after a trade.

QIDjt =
#Imprjt −#DeterTradejt
#Imprjt +#DeterTradejt

(2)

Panel A in Table 1 contains summary statistics of the national best quoted ask and bid up-

dates. The mean and median daily national best bid (NBB) improvements are 1,046.5 and 579,

respectively; the analogous mean and median for national best ask (NBO) are 1,052.9 and 584, re-
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spectively. Consistent with the prevalence of undercutting activity, the mean and median of daily

trade-driven NBB deteriorations are 279.05 and 110, respectively, with ask-side analogues of 277.7

and 109. More compelling evidence for the prevalence of undercutting obtain from the fractions

single-tick quote updates. Liquidity providers are expected to undercut the existing best price by

the minimum amount of possible price improvement, i.e., one tick. Hence, best quote improvements

are most likely to occur at single-tick updates. By contrast, trade-driven quote deteriorations end-

ing undercutting runs more likely reflect multiple-tick updates as marketable orders may consume

the depth available beyond the top of the order book. Consistent with this, on a typical stock-day,

near 90% of quote improvements reflect single-tick updates. This is significantly higher than the

analogous 61% ratio for trade-driven quote deteriorations. Consequently, and reflecting the larger

frequency of best quote improvements than deteriorations, the thirteenth row in Table 1 shows that

over 99% of QID observations are positive. Specifically, only 3,222 of observations (only 0.05% of

the sample) correspond to a negative QID quantity, even though QID can be as small as −1.

We match QIDjt with daily time-weighted dollar spreads (denoted qspjt) and percent quoted

spreads (denoted pspjt) as well as percent effective spreads (denoted pefspjt), realized spreads

(denoted prspjt), price impacts (denoted primpjt), regular-hour trading volume (denoted tvjt),

and volatility of 1-minute quote-midpoint returns (denoted qvoljt) obtained from WRDS Intraday

Indicators. We also match them with daily returns (denoted rjt), reflecting quote midpoints at

close, and trading volumes from Daily CRSP.9 The CRSP-TAQ linking table provided by WRDS

facilitates these mergers.

We then merge our daily data base with earnings announcements (EA), unscheduled corpo-

rate events (PR), and news arrivals unassociated with identifiable corporate events (NA), using

the announcements’ timing to identify the first trading day where trading takes place after an

announcement. Earnings announcement dates are obtained from COMPUSTAT. Reflecting the

findings of [cite] that the vast majority of such announcements arrive outside regular trading

hours, we designate the trading day after the recorded announcement date as the effective an-

nouncement date. We obtain dates and timestamps of unscheduled press releases and news ar-

rivals from Ravenpack. For press releases, we focus on Ravenpack “full-article” or “news-flash”

observations with “news relevance” scores of at least 90. For news arrivals, we focus on Raven-

9Our daily return calculations account for dividend distributions and overnight adjustments such as stock splits.
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pack “full-article” or “news-flash” observations with “news relevance” scores of at least 95 and no

recorded “event relevance” score. We construct event windows that span the 10 days prior to an

announcement and 10 days after the announcement.10

We construct a set of stock characteristics for our asset pricing analysis using data from CRSP,

COMPUSTAT, and 13F. For stock j in month m, RETj,m−1 and RETm−12
j,m−2, respectively, cap-

ture compound returns over the preceding month and the 11 months prior; Mj,m−12 is market-

capitalization based on the closing price 12 months earlier; DYDj,m−1 is dividend yield, i.e., the

ratio of total dividend distributions over the 12 months ending in month m − 1 divided by the

closing price at the end of month m− 1. The book-to-market ratio, BMj,m−1, is the most recently

reported book value divided by market capitalization at the end of month m − 1.11 We obtain

three-factor Fama-French betas for each stock from Beta Suite by WRDS. Our approach employs

weekly data from rolling horizons that span the preceding 104 weeks, requiring a minimum of 52

weeks. For each stock month, the set of betas represent estimates from the estimation horizon

ending in the last week of that month. As in Ang, Hodrick, Zhing, and Zhang (2006), we use

a CAPM regression using daily observations in each month to construct monthly idiosyncratic

volatility measures. We match each monthly observation with previous calendar quarter’s fraction

of institutionally owned shares outstanding (IOShr) and the concentration of such ownership based

on a Herfindahl-Hirschman index (IOShrHHI) using 13F data.12

To control for stock illiquidity in each month m, we use five liquidity measures constructed

using daily or intraday obsrvations from month m − 2: (1) time-weighted dollar quoted spreads

(QSP); (2) size-weighted dollar effective spread (EFSP ); (3) monthly estimates of Kyle’s λ, con-

structed by regressing 5-minute returns (calculated from quote midpoints) on the contemporaneous

signed square root of net order flow (estimated using the Lee-Ready algorithm) from the respective

month (Lambda); (4) a modified version of Amihud (2002)’s measure (AM);13 and (5) Barardehi,

Bernhardt, Da, and Warachka (2023)’s retail-based institutional liquidity measure (ILMV ). We

also construct turnover ratio (TO), defined as the average daily fraction of share volume to shares

10For each announcement type (EA, PR, or NA), we focus on the first announcement should multiple announcements
cluster over a 20 day period. This endures non-overlapping event windows.

11Book value is defined as Compustat’s shareholder equity value (seq) plus deferred taxes (txdb). We use the
“linktable” from WRDS to match stocks across CRSP and Compustat, dropping stocks without links.

12We match CRSP with COMPUSTAT and 13F using the link tables and matching code provided by WRDS.
13Barardehi, Bernhardt, Ruchti, and Weidemier (2021) modify this measure by using open-to-close, instead of

close-to-close, daily returns to construct Amihud measure’s underlying daily liquidity proxy.
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outstanding using observations from month m− 2.

Finally, we obtain lending fee observations at the stock-day level for the 2009-2018 period from

Financial Information Service (FIS) Astec Analytics. FIS compiles dollar-weighted average stock

lending fees at daily frequencies. For each stock, we aggregate these lending fees annually to

estimate expected lending fees over the following calendar year for the respective stock (see Dixon,

Corbin, and Kelley (2021) for detailed descriptions of FIS data).

4.2 Abnormal Undercutting Activity and Informed Trading

This section describes the construction of our informed trading riskmeasure, QIDRes. The intuition

behind our measure reflects market makers’ efforts to avoid trading against informed investors. We

argue that market makers become less willing to undercut each others’ quotes when they perceive

incoming order flow to be informed. This notion is also consistent with marker makers’ concerns

about their limit orders becoming stale and picked off by faster traders, as first observed by Budish

et al. (2015). Intuitively, an increased likelihood of informed trading raises the risk of a market

maker’s limit orders going stale and makes the market maker less willing to jump in front of the

queue through undercutting.

It is important to observe that undercutting is more likely to occur in less liquid stocks, e.g.,

stocks with wider bid-ask spread, for two reasons. First, with a market maker’s limit orders

coinciding with the NBBO, a wider bid-ask spread provides larger profits per round-trip set of

liquidity providing trades as market maker orders are filled by incoming marketable orders. Second,

since trades need to improve the price by only 1¢ to undercut, a wider bid-ask spread implies a

capacity for undercutting in terms of number ob available intra-spread price ticks. Moreover,

undercutting by the best existing quotes by 1¢ is relatively cheaper for higher share prices (see

Li and Ye (2023) for discussion on the relevance of the interaction share price and minimum tick

size for liquidity provision). This leads us to use relative quoted bid-ask spread to control for the

variation in undercutting capacities offered by market conditions. Figure 2 documents a strong

positive association between our measure of undercutting, QID, and percent bid-ask spread that

yields a R2 of 58.44%.

To operationalize our intuition that informed trading risk discourages undercutting, we employ

a backward-looking procedure to estimate abnormal undercutting activity at the stock-day level.
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We first estimate the following regression using daily observations of each stock in each quarter

QIDq
jt = aqj + bqj ln(PQSP )qjt + uqjt, (3)

where QIDq
jt measures undercutting activity in stock j on day t of quarter q; ln(PQSP )qjt is the

natural log of the corresponding time-weighted percentage quoted spread; and uqjt is the error term.

We then use estimated intercept and slope coefficients from the preceding quarter, i.e., âq−1
j and

b̂q−1
j , respectively, to construct daily estimates of unexpected undercutting activity in the current

quarter. Finally, we scale unexpected undercutting by the standard deviation of daily QIDq
jt

observations, S(QID)qj , to account for cross-sectional differences in the variability of undercutting

activity. Such variability reflect factors like the more tightly bounded undercutting in stocks with

binding minimum tick sizes, which in turn reduces the variation in QID in these stocks.14 Thus,

abnormal undercutting activity for stock j on day t of quarter q is given by:

QIDResqjt = −
QIDq

jt −
(
âq−1
j + b̂q−1

j ln(PQSP )qjt

)
S(QID)q−1

j

. (4)

Since undercutting is expected to be abnormally low in presence of informed trading, higher

QIDRes reflects higher informed trading.

Reflecting the construction of QIDRes, we expect it to possess the following two properties: (1)

is it distributed with a mean and a standard deviation that are close to 0 and 1, respectively;15 (2) it

should not be correlated with other relevant microstructure and liquidity outcomes. We find strong

support of this in the data. The last two rows in Table 1’s Panel A report the summary statistics

for QIDResjt, indicating that the measure is tightly distributed around zero, with the mean of 0.07

and the standard deviation of 1.53. Panel B in Table 1 contains the correlation coefficients between

daily abnormal undercutting activity, QIDResqjt and contemporaneous micrsotructure outcomes

defined earlier, including quoted, effective, and realized spreads; price impact; realized volatility;

14Whenever the 1-¢ tick size binds, liquidity providing algorithms may not undercut on exchanges using non-
marketable limit orders. As such, one can argue that for stocks where minimum tick more often binds the variation
in QID, which we measure using the standard deviation of QID, is lower.

15Despite the standardization of unexpected undercutting by equation (4), we do not expect QIDRes to exhibit a
mean of exactly 0 and a standard deviation of exactly 1. This is because in each quarter both the conditional mean
and the standard deviation used to standardize undercutting are estimated based preceding quarter’s data and will
differ from the current quarter’s realized mean and standard deviation.
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absolute daily return; and trading volume. None of these correlation coefficient exceed 0.06 in

absolute value, suggesting that QIDRes is orthogonal to these outcomes.

In Appendix A.3, we examine the qualitative robustness of our findings to two modified con-

structions of QIDRes. The first modification, denoted QIDResInt, controls for the variation in the

unconditional average of undercutting. Our qualitative findings extend if, instead of S(QID)q−1
j ,

we use âq−1
j to normalize unexpected undercutting. The second alternative, denoted QIDResV ,

augments equations (3) and (A.10) with the volatility of 1-minute returns based on quote mid-

points. This approach ensures that our measures do not conflate informed trading risk with the

effect of higher volatility, e.g., reflecting more frequently arrivals of purely public information, that

can also deter liquidity provision and undercutting. This modification also leaves our qualitative

findings unaffected.

5 Results

5.1 The Impact of Undercutting Costs on QID

We begin our analysis by establishing the validity of the QID ratio as a measure of undercutting.

To do so, we leverage the tick size pilot (TSP), during which a select number of stocks had their

minimum tick sizes increased from 1¢ to 5¢—see, e.g., Werner et al. (2022), for a detailed description

of the experiment. An increase in the tick size will decrease runs by making undercutting more

expensive. For a TSP stock, the cost to undercut increased by five fold. Consequently, we expect

the implementation of TSP to be associated with a decrease in QID and that the conclusion of the

TSP will be associated with a reversal.

We study two TSP event windows: one around the imposition of TSP and the other around

its conclusion. For our analysis of the imposition of the TSP, we examine the time window of

08/11/2016 through 12/15/2016. We follow Griffith and Roseman (2019) and exclude from this

window the trading days spanning the staggered imposition of the TSP which comprise 10/03/2016–

10/23/2016.16 Our analysis of the imposition of the TSP has a pre-period where both the pilot and

control stocks had a tick of 1¢, running from 8/11/2016 to 10/02/2016, and a treatment period

16Some effects related to the tick size change may not occur instantaneously as market participants may need time
to optimize systems and adapt behavior. Excluding the imposition period helps mitigate some of this noise that may
muddle inference of the steady state effects of the tick size change.
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where pilot stocks had a 5¢ tick and control stocks had a 1¢ tick, running from 10/24/2016 to

12/15/2016. Our analysis of the conclusion of the TSP runs from 08/07/2018 through 11/20/2018,

during which the minimum tick size for stocks in TSP Test Groups was simultaneously reduced

from 5¢ to 1¢ on 10/01/2018.17

We compare undercutting activity, QID, of control stocks, denoted C, to those of TSP Test

Groups 1 and 2, denoted G1 and G2, respectively. Reflecting the similarities between G1 and G2

and to increase the statistical power of our tests, we combine G1 and G2 stocks together. The

“tick size pilot indicator” flag in TAQ data identifies control and pilot stocks as well as the

exact dates tick size changes were enforced for each pilot stock, facilitating accurate identifications

of enforcement dates when tick changes were enforced or lifted with delays relative to the dates

intended by the program. Stocks that changed test groups or that were removed from the TSP, for

any reason, are excluded, as are stock-days with previous day’s closing prices below $5.00.

Our estimation strategy is similar to Barardehi, Dixon, Liu, and Lohr (2023) who show that the

same change in the tick size due to TSP had opposing impacts on certain outcomes depending on

the extent to which minimum ticks were binding pre-shock. But more important for our analysis

is that undercutting runs are affected by how tight the bid-ask spread is, and thus how many

price levels competing liquidity providing algorithms can use to undercut. Hence, we assign each

TSP stock to one of four bins based on their prevailing time-weighted quoted spread prior to the

imposition and conclusion of the TSP. For the imposition window, stocks are classified into four bins

according to their quoted spreads in May and June of 2016:18 : bin 1 (tick constrained) 5¢ or less

quoted spread, bin 2 (near-tick constrained) greater than 5¢ but less than 10¢, bin 3 (intermediate

spread) greater than 10¢ but less than 15¢, and bin 4 (wide spread) greater than 15¢. For the

conclusion of the TSP, we assign stocks to bins reflecting average quoted spreads in May and June

2018: bin 1 (tick constrained) less than 5.5¢, bin 2 (near-tick constrained) greater than 5.5¢ but

less than 10¢,19 bin 3 (intermediate spread) greater than 10¢ but less than 15¢, and bin 4 (wide

17Following Rindi and Werner (2019), we remove trading days coinciding with Labor Day, Thanksgiving, and Black
Friday from our sample. We also do not omit the period surrounding the conclusion of the TSP as we do with the
imposition of the TSP because nearly all TSP stocks returned to a 1¢ tick simultaneously, with market participants
returning to a familiar trading environment, i.e., one that had continued to operate on the majority of stocks. For
these reasons, we generally view the conclusion of the TSP as a cleaner test than the TSP imposition.

18Specifically we use WRDS Intraday Indicators data for time-weighted average quoted spread for each stock during
regular trading hours and compute a simple average across all trading days in May and June 2016.

19This slight modification of bin 1’s threshold reflects the restrictions put in place by the TSP. The 5¢ tick size
creates a floor on quoted spreads making it all but impossible for a TSP stock to have a time-weighted quoted spread
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spread) greater than 15¢.

Our difference-in-difference strategy estimates the impact of an exogenous change in tick size,

hence undercutting costs, on QID. We estimate

QIDj
t = α0 + αpPilotj + αeEventjt + β

(
Pilotj × Eventjt

)
+ ut + εjt , (5)

by event window and bin, where QIDj
t is stock j’s undercutting activity on day t; Pilott is an

indicator variable that equals 1 for treated stocks (G1 or G2) and equals 0 for control stocks;

Eventjt of a treated stock equals 0 prior to a change in minimum tick size and equals 1 after the

change, accounting for the enforcement date differences across stocks; Eventjt of a control stock in

the imposition (conclusion) window equals zero before 10/03/2016 (10/01/2018) and equals 1 as of

10/24/2016 (10/01/2018); ut is the date fixed effect; and εj,t is the error term. Similar to Barardehi

et al. (2023), we estimate the treatment effect β by fitting equation (5) using both quantile and OLS

regressions, winsorizing QIDj
t at its 1st and 99th percentiles by tick constraint bin and treatment

category. All of our estimates control for date fixed effects and double-clustered standard errors at

the stock-date level.20

Table 2 shows that our findings strongly align with the expected effect of a tick size change on

undercutting. The first row of Panels A and B provide the difference-in-difference effect of the TSP

on QID for the various groups along with the median/mean value of QID for the control stocks

in the sample. Consistent with tick constraints hindering undercutting, the median/mean value of

QID increases as spreads get wider with the QID value for tick constrained stocks being very close

to zero. Nonetheless, across all groups, and for the TSP imposition and conclusion, the wider tick

size is associated with a statistically negative shift in the QID ratio that reverses when tick sizes

are returned to 1¢.

Our additional analyses attribute the TSP effects on QID to changes in the quoting behavior,

consistent with the impact of a change in tick size on undercutting choices of liquidity providers.

less than 5¢, thus the threshold for tick constrained stocks is 5.5¢ for the conclusion of the TSP.
20Due to variation in the dates when the TSP was implemented across TSP stocks, simultaneous inclusion of

variable Eventj,t and date fixed effects do not lead to perfect co-linearity. The introduction of date fixed effects
reflects the fact that for some stocks, the enforcement/lifting dates of TSP restrictions differ from the intended dates
by the program. However, in unreported results, we verify robustness to, instead, the use of stock fixed effects or
the use of both date and stock fixed effects. The robustness of results across these specifications is consistent with
the findings of Rindi and Werner (2019), who also state that their results are virtually unchanged as they vary their
fixed effects specifications.
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Rows two and three break down the effect of the TSP on the two aspects of the QID ratio. The

second row shows the difference-in-difference effect of the TSP on the number of quote improvements

divided by total number of quote updates (Impr). We find that increased tick size reduces the

ratio of quote improvements to quote updates, consistent with reduced undercutting as it becomes

more costly jump to the front of the queue. The third row shows that a wider tick size raises the

ratio of trade driven quote deteriorations to all quote updates (DeterTrade). Existing literature

establishes that the widening of tick size during TSP raised trade sizes but left trading volume

unchanged (e.g., see Rindi and Werner (2019)), which suggests a reduction in the number of trades.

As such, DeterTrade’s numerator likely declines as tick size widens, suggesting that the positive

effect of a wider tick on DeterTrade reflects reductions on the denominator, i.e., the number of

quote updates, that more than offsets the decline in the numerator. These findings reinforce our

interpretation that a larger tick size discourages undercutting as reflected in liquidity providers’

less aggressive quoting behavior.

We reinforce the link between undercutting costs and QID by exploiting the relevance of relative

tick sizes for undercutting costs. Following O’Hara, Saar, and Zhong (2019), we focus on stock splits

and reverse splits as events that raise and reduce undercutting costs, respectively, by changing

relative tick sizes. With a fixed minimum tick size, i.e., 1¢, the share price decline due to a stock

split raises relative tick size, while the share price rise due to a reverse split reduces it. For example,

to improve the best ask price of $10 a liquidity provider must quote a round-lot or larger ask order

at $9.99, incurring a relative cost of 1bps. With a 2-for-1 split, the best ask should shift to $5,

leading to a $4.99 reflecting the next better ask price offered by an undercutting algorithm; and

this corresponds to a 2bps relative cost—twice as large as the pre-split cost. As such, we expect

undercutting activity, and hence QID, to fall following stock splits and to rise following stock

reverse splits. This is exactly what we find.

Our analysis of QID around stock splits also addresses the generalizability of findings using

the TSP experiment that focuses on small-cap firms. Specifically, when forming event windows

that span 30 days around a stock (reverse) split, we exclude any stock featuring a closing share

price of $5 or less over the even window. We identify 476 split and 27 reverse-split events that fit

this criteria. The average and median market-capitalization of stocks with split events are $8.36

billion and $2.25 billions, respectively. The average and median market-capitalization of stocks
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with reverse-split events are $12.66 billion and $2.51 billion, respectively.

Panel A in Figure 3 shows that average QID drops from over 0.6 to below 0.5 following stock

splits; in contrast, it rises from below 0.2 to over 0.3 following stock revers splits. Importantly,

this cannot be attributed to the corresponding variation in relative quoted spreads, e.g., it cannot

reflect the positive association documented in Figure 2. In fact, Panel B in Figure 3 shows no

significant variation in relative quoted spreads around stock split events. This leads us to attribute

the observed changes in QID around these events to changes in undercutting costs.

Our collective findings establish the impact of changes in the cost of undercutting on the level

of QID, suggesting a strong positive link between QID and undercutting activity. We next relate

abnormally low undercutting activity, i.e., high QIDRes, to increased informed trading.

5.2 QIDRes and Information Arrival

Our next analysis leverages the increased likelihood of informed trading around major instances of

information arrival to highlight the correlation between abnormally low undercutting activity and

informed trading. Specifically, we focus on earnings announcements (EA), unscheduled corporate

events (PR), and news arrivals unassociated with identifiable corporate events (NA).

For each stock, we form twenty-trading-day windows around each information event occuring

on day t, with pre-event trading days t − 10 through t − 1 and post event trading days t through

t + 10. Whenever available, we use the exact time stamp of the information event to accurately

identify the event day t; an event is matched with day t if the event took place after-hours on day

t − 1 or before the close on day t. For earnings announcements, where COMPUSTAT does not

provide timestamps, we assume they all arrive after-hours. Moreover, to prevent contamination due

to clustering of events, we focus on isolated events that do not follow a similar event in preceding

10 trading days, nor are followed by a similar event in the following 10 trading days.

To set up our analysis, we first explore the behavior of existing measures of informed trading

intensity/probability around these events and confirm the findings in the literature. We analyze the

behaviors of five different versions of Bogousslavsky et al. (2023)’s ITI measure,21 as well as three

versions of PIN , discussed by Duarte et al. (2020), the OWRPIN measure of Odders-White and

21We thank authors of Bogousslavsky et al. (2023) for generously sharing with us 2010-2019 daily ITI measures.
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Ready (2008),22 and MIA measures of Johnson and So (2018).23 Figure 4 shows that all versions of

ITI rise around these instances of information arrival, and that qualitatively similar results obtain

using PIN and MIA, even though results vary across different versions of PIN and MIA and for

different information events. Overall, these findings are consistent with increased informed trading

riskaround instances of material information arrival.

Turning to QIDRes in Figure 5 we document the same pattern. Across all information events

we find that QIDRes rises leading up to the event, peaking on the day of the event and reverting

afterward. Consistent with adverse-section concerns underlying the abnormally low undercutting

activity around information events, we find QIDRes spikes are associated with significantly wider

bid-ask spreads (in Panels A, C, and E). This short-term inverse relation between abnormal un-

dercutting activity and spreads, i.e., the positive relation between QIDRes and spreads, obtains

despite the positive long-term relation shown in Figure 2—which reflects more ample undercutting

opportunities when spreads are wide. Reduced undercutting in the face of widened bid-ask spreads

can only reconcile with increased adverse-selection concerns of liquidity providers, suggesting that

QIDRes captures informed trading. Further bolstering the idea that these events are associated

with significant information we also find spikes in trading volume and abnormal absolute daily

return around these events (Panels B, D, and F). Panels A and B present the results for earnings

announcements. Panels C and D present the results for unscheduled corporate events, and Panels

E and F present the results for other news arrivals. Across all events we observe that these days are

associated with a spike in the bid ask spread, abnormal trading volume, and in absolute abnormal

return. Importantly, as our next analysis indicates, the behavior of QIDRes appears to be distinct

from that of volatility around information events. Figure A.2 shows that the qualitative behavior

of QIDRes around information events remains unaffected when we modify our measure to directly

control for the the effect of volatility.

We next show that changes in QIDRes predicts imminent upcoming unscheduled information

arrival events, i.e., PRs and NAs defined earlier. To highlight the incremental predictive power of

22Estimates of PIN measures for all NMS stocks up to 2012 are available at Professor Edwin Wu’s website.
23Estimates of MIA measures for qualifying stock-days up to December, 2018 are available at Professor Travis

Johnson’s website. Out of 5,940,019 stock-day QIDRes observations in our 2010-2018 sub-sample, we can only match
446,066 stock-days featuring MIA measures. The number of missing observations reflect at least to constraints
associated with MIA measures: (1) a common share must be optionable; and (2) to construct MIA for a given
stock-day, Johnson and So (2018) require non-zero put and call option volume over the preciding 60 trading days.
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QIDRes, we control for other observables that, according to Figure 5, exhibit distinct behaviors

prior to information arrival days. Specifically, we control for bid-ask spreads, trading volume, and

absolute daily returns. Moreover, instead of focusing on isolated events, we control for information

event clusters by observing that current information events can predict future information events.

Our analysis estimates the probabilities of unscheduled press releases (PR) and news arrivals

(NA) using logistic regressions of these probabilities on past changes in undercutting behavior

and a set of control variables, accounting for firm fixed effects. The dependent variable is defined

as indicator function I(z)jt , with z ∈ {PR,NA} that equals 1 when event z takes place on day

t for stock j and equals 0 otherwise. The set of independent variables contain 5-day changes

∆xjt−1 = xjt−1 − xjt−6, with x ∈ {QIDRes, qsp, tv, |r|}, in abnormal undercutting, quoted bid-ask

spread, trading volume, and absolute returns. These variables, as shown in Figure 5 exhibit notable

changes in the days leading up to an information event. To control for past relevant information

events, additional independent variables are indicator functions I(Inf)js that equal 1 if an earning

announcement (EA), an unscheduled press release (PR), or a news arrival (NA) event takes place

on day s for stock j and equal 0 otherwise, with s ∈ {t− 5, . . . , t− 1}.

We estimate the probability of event z to occur on day t for stock j using logistic regressions

on a year-by-year basis.24 We fit the models once only using QIDRes and once using QIDRes

and all other controls. Tables 3 and 4 show that a 5-day change in QIDRes positively predicts the

immediately upcoming unscheduled press release or news arrival. This is consistent with market

makers learning from order flow about a an imminent information event (Chae (2005)). For press

releases, this finding is robust to controlling for changes in trading and quoting outcomes, that

correspond with the change in QIDRes, as well as clustering of information events. For news

arrivals, the statistical significance is affected by controlling for this these outcomes, which is

consistent with our earlier finding that QIDRes spikes are smaller around NAs, relative to those

observed around EAs and PRs. Overall, we find that QIDRes possesses significant incremental

predictive power for imminent information events relative other liquidity and information variables.

24Estimation by year reflects the computational burden when using the over 6 million observations from all years.
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5.3 QIDRes and Information Content of Trades

We next relate the spikes in QIDRes around information arrivals, discussed in Section 5.2, to the

extent of private information contained in the typical trade associated with these spikes. To do so,

we first show that the magnitude and persistence of the increase in QIDRes reflect the magnitude

of the associated information event. Our tests are motivated by Kim and Verrecchia (1994)’s

premise that more informative public news lead to greater post-event information asymmetries.

For earnings announcements, we use SUE scores from I/B/E/S to capture the variation in the

magnitude of events: in a given quarter, earnings announcement SUE scores in the top or bottom

20 percent—indicating that the announced earnings were significantly higher or lower than analyst

consensus—are considered highly informative events. For press releases and news arrivals, we proxy

for the information content using post-event realized price movements. For a day-t event, we simply

divide each quarterly sample into those events associated with high versus low absolute compound

post-event 10-day return.25 Events in the top 40 percent are identified as highly informative events,

and those in the bottom 60 percent are the less informative events.

Panels A through C of Figure 6 show that the magnitude of the increase in QIDRes posi-

tively correlates with the magnitude of the information event. We first note that there is minimal

pre-event variation in QIDRes based on the magnitudes of information events, indicating that

any post-event differences in abnormal undercutting may not be attributed to persistent stock

characteristics such as volatility. Consistent with abnormally low undercutting activity, i.e., high

QIDRes, capturing increased informed trading, we find in all cases that the event-day increase in

QIDRes is larger for highly informative events than it is for less informative events. Moreover,

undercutting activity appears to rebound more quickly toward pre-event levels following less infor-

mative events, suggesting that market-making algorithms return to “business as usual” as the risk

of trading against informed investors drops. This pattern is remarkably stronger for news arrivals

that are classified by Ravenpack as disassociated with any corporate events, suggesting that these

events are highly unanticipated by market participants.

We further highlight the link between QIDRes and informed trading risk by decomposing the

transaction cost associated with each trade, as captured by effective spread, into permanent and

25Qualitative findings are robust to excluding event days from these return calculations
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temporary price impact components. This decomposition reflects the idea that the cost of consum-

ing liquidity for incoming marketable order flow consists two components: (1) the compensation

that liquidity providers demand for exposure to adverse-selection risk, captured by price impact

and reflective of potential information advantages of liquidity consumers; and (2) the compensa-

tion that liquidity providers demand in return for facilitating “immediacy”, captured by realized

spreads that is generally attributed to operational costs incurred and revenues collected by market

makers (see, e.g., Hendershott, Jones, and Menkveld (2011)). If the abnormally low undercutting

documented in Figure 5 is due to informed trading, then any corresponding variation in effective

spread should be primarily attributable to the price impact (adverse selection) component. Panels

D, E, and F of Figure 6 show exactly this. Around the news events realized spreads are effectively

unchanged and the entire observed increase in the effective spread is explained by an increase in

the adverse selection component of the effective spread.

5.4 QIDRes and Direct Sources of Informed Trade

In this section, we address an alternative explanation for the association between abnormally low

undercutting, i.e., high QIDRes, and the arrivals of information events. Specifically, we provide

evidence thatQIDRes is unlikely to only capture increased ‘sniping risk’ around information events.

Budish et al. (2015) show that in continuous-time limit order markets high-frequency traders engage

in an arms race over the speed with which they can place/cancel orders. A key result in this

literature is that differences in order processing speeds across traders lead limit orders of ‘slower’

traders to become stale for very short periods of time as the prices move against these resting orders

upon arrivals of public information. These stale orders are then picked off, i.e. sniped, by ‘faster’

traders, leading to losses to slow traders. This phenomenon poses an adverse selection risk that is

unrelated to information asymmetry about the fundamental value of the asset, but rather the speed

with which different traders can respond to the arrivals of public information.26 Relevant for our

analysis is the possibility that information events that we study purely reflect increased ‘sniping

risk’, as opposed to increased information asymmetry regarding fundamental value, leading to a

reduction in the willingness of liquidity providers to undercut.

26Menkveld and Zoican (2017) extent these insights by showing that exogenous increased in order processing speed
offered by exchanges may exacerbate this issue and harm liquidity provision.
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To address this concern, we use more direct measures of informed trading, as opposed to solely

relying on variations around information events, to provide cross-sectional evidence that links in-

creased informed trading risk to high QIDRes.27 We first show that QIDRes is higher when short

sellers more activity take (accumulate) or leave (cover) short positions. The literature has provided

robust evidence that short-seller trades are informed (see, e.g., Desai, Ramesh, Thiagarajan, and

Balachandran (2002); Engelberg, Reed, and Ringgenberg (2012); Boehmer and Wu (2013), among

others), so we expect to observe higher QIDRes for stocks with high short selling activity.

We match each stock’s bi-weekly percentage change in short interest to the corresponding

averages of various informed trading risk measures, including QIDRes. We then sort each bi-

weekly cross-section into ten portfolios (deciles) of signed percentage change in short interest, with

the bottom decile containing stocks with largest coverings of short interest and the top portfolio

containing stocks with largest 10% of short interest accumulations. We then calculate portfolio-level

average informed trading risk measures in each bi-weekly period.28 We finally plot the time-series

means of these averages against change-in-short-interest portfolios.

Figure 7 shows that most measures of informed trading risk follow ∪-shaped patterns as we

go from portfolio of stocks with largest coverings of short interest (declie 1) to stocks with largest

accumulations of short interest (decile 10). This is consistent with private information underlying

both buying and selling activity by short sellers and confirms Bogousslavsky et al. (2023)’s findings

that relate ITIs o short interest. However, consistent with short sellers main focus on investigating

negative information about asset values, most informed trading risk measures are highest when

short interest accumulations are largest. Panel A shows that all versions of ITI display these

patterns; whereas Panel B and C show that even though PIN , DY PIN , GPIN , and MIA follow

similar patters, OWRPIN exhibits a ∩-shaped pattern. Panels D and E in Figure 7 document

relationships between QIDRes and short-seller activity conditioning on the past levels of short

interest and firm size, respectively. Our findings suggest that (1) increased QIDRes in times of

high short-seller activity is more pronounced for stocks with higher levels of short interest, indicative

of a higher likelihood that order flow contains orders from informed short sellers; and (2) the link

27Nonetheless, Appendix A.3 shows that a modified version of our measure QIDResV , which directly controls for
the volatility of 1-minute quote midpoint returns exhibit patterns around information events that are qualitatively
similar to those of QIDRes. This evidence suggests that pure sniping risk does drive the variation in QIDRes.

28To ensure that our findings doe not pick up any temporal variation in liquidity provision activities, for QIDRes,
we first adjust each bi-weekly stock-specific average relative to the corresponding market-wide mean QIDRes.
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between QIDRes and the information content of short selling is not a small-stock phenomenon.

Importantly, all these qualitative findings extend if we conservatively exclude biweekly periods

that overlap with at least an EA, PR, or NA,29 reinforcing the conclusion that informed trading

risk identified by QIDRes is likely distinct from increased sniping risk associated with public

information arrival.

Second, we show that most measures indicate increased information asymmetry around a subset

of informed mutual-fund trades. Barardehi et al. (2022) use ANcerno to identify industry-neutral

self-financed trades of mutual funds, denoted INSFIT, and establish these trades are informed.

We estimate the average incremental difference between informed trading risk measures around

INSFIT days and non-INSFIT days, controlling for firm and date fixed effects.30 We form 1-, 3-,

and 5-day windows around stocks-days representing an INSFIT trade, examining INSFIT-bought

and INSFIT-sold stocks separately. We then compare informed trading risk measures observed

inside versus outside these windows.

Table 5 shows that stock-days featuring informed institutional trades are associated with statis-

tically higher average informed trading risk measures. Specifically, with the exception of ITIinsider,

GPIN , and OWRPIN , results based on all measures are consistent with increased informed trad-

ing risk on stock-days surrounding with INSFIT buy or INSFIT sell trades. Further highlighting

the relevance of the information content of INSFIT trades, we find the largest differences on the

“day of”, i.e., 1-day INSFIT trade windows. Widening these windows to 3-day and 5-day horizons

around the underlying INSFIT trades lead to smaller estimated differences that become statistically

insignificant for some existing measures.

In sum, we find a positive link between more direct, established sources of informed trading and

various measures of informed trading risk used in our analysis. Our finding suggests that QIDRes

captures variation in the extent of information asymmetry, rather than solely that in sniping risk.

29Such biweekly periods account for nearly half of the stock-days in our sample.
30We thank authors of Barardehi et al. (2022) for permitting us to use a sample of daily indicators that identify

stocks bought and sold through INSFIT. This sample spans January 1999 through September 2011, leaving us with
the overlap period of January 2010 through September 2011 for our analysis.
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5.5 QIDRes and Compensation for Liquidity Provision

We next show that spikes in QIDRes are hard to reconcile with inventory management concerns of

liquidity providers driven by capital constraints. Comerton-Forde et al. (2010) show that liquidity

providers with capital constraints become reluctant to accumulate additional inventory when their

inventories are unbalanced; and So and Wang (2014) show that expected returns from liquidity pro-

vision significantly rise prior to earnings announcements reflecting increased inventory risk. Thus,

a potential explanation for reductions in undercutting, i.e., QIDRes spikes, may reflect inflated

market maker inventories driven by increased liquidity demand that leads capital constraints to

bind. Compensation for such liquidity provision is often reflected by short-term price pressure that

is followed by price reversals (see, e.g., Campbell, Grossman, and Wang (1993); Hendershott and

Menkveld (2014)). Thus, if inventory management concerns underlie the spikes in QIDRes, i.e.,

abnormally low undercutting, we should observe greater price reversals following high-QIDRes

days. We find the exact opposite.

Trading days with higher QIDRes are followed by weaker price reversals. On each day t we

sort stocks into quintiles of QIDRes. We then regress the cumulative returns from the close of day

t through the close of day t + n, with n ∈ {1, . . . , 10}, on day t returns, controlling for date and

stock fixed effects. A negative slope coefficient indicates price reversal with the magnitude of this

slope coefficient indicating the magnitude of this reversal. Panel A in Table 6 shows that the high

QIDRes portfolio, containing stock-days with abnormally low undercutting activity, have coeffi-

cients significantly closer to zero than the low QIDRes portfolio. For all future return horizons, n,

reversals grow nearly monotonically weaker, with the absolute values of slope coefficients shrinking

by half, as we move from the low QIDRes tercile to its high tercile. Hence, inventory management

concerns of liquidity providers cannot drive the variation in QIDRes. In contrast, and consistent

with our earlier findings, weaker price reversals that follow days with higher QIDRes further rein-

forces that QIDRes picks up informed trading. This finding is also consistent with Bogousslavsky

et al. (2023) who find that trading days with higher informed trading intensity (ITI) are followed

by weaker price reversals.

Panel B in Table 6 documents the extent of price reversals conditional on both QIDRes and

realized volatility of 1-minute returns based on midpoint prices, qvol. This analysis addresses the
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possible link between volatility and undercutting activity, reflecting reduced liquidity provision,

and hence undercutting, when volatility is high. We sort each cross-section independently into

terciles of QIDRes and realized volatility, before estimating the extent of price reversals conditional

on both. First, we observe that roughly equal number of observations fall in the nine QIDRes-

volatility categories, indicating a near-zero correlation between abnormal undercutting and realized

volatility—in fact, the correlation coefficient in the full sample is −0.0011 (see Panel B in Table 1).

Second, the finding that highest QIDRes tercile is associated with weakest subsequent reversals

extends across different levels of realized volatility.

5.6 Intraday Analysis of QIDRes

In this section, we analyze the relationship between QIDRes and informed trading risk by exam-

ining this link at different times of the trading day. Our analysis is motivated by the premise that

information asymmetry, and the liquidity providers’ risk of trading with informed investors, declines

over the course of the trading day (see, e.g., Madhavan, Richardson, and Roomans (1997)).31 We

construct three “intraday” versions of QIDRes that reflect undercutting activity at three time-of-

day segments of the trading day. First, we inspect the correlation between QIDResjt and each of

these intraday versions. Second, we compare the behaviors of intraday QIDRes measures around

information events.

To construct intraday QIDRes, we divide each trading day into three segments: 9:45am–

11:45am (morning, am), 11:45am–1:45pm (mid-day, md), and 1:45pm–3:45pm (afternoon, pm),

which allows us to construct the three respective intraday undercutting activity measures QID(τ)qjt,

with τ ∈ {am,md, pm}. Quarter q − 1 quantities of these intraday undercutting activity measures

are then entered, in turn, on the left hand side of equation (3).32 The resulting parameter es-

timates as well as standard deviations of intraday QID measures enter equation (4) to produce

QIDRes(am)qjt, QIDRes(md)qjt, and QIDRes(pm)qjt. This process decomposes QIDRes on each

stock day into its intraday components.

If QIDRes captures informed trading risk and if such risk is higher in earlier trading hours of the

31Also see Admati and Pfleiderer (1988) and Wood, McInish, and Ord (1985), among others.
32We use the same right-hand-side variable in equation (3) when constructing different intraday versions of QID.

This allows us to attribute any differences in the resulting QIDRes measures to time-of-day effects in undercutting
rather than those in quoted spreads.
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trading day then we expect our baseline QIDResqjt to be more strongly correlated with its morning

component, QIDRes(am)qjt, than with the other two components. We find strong evidence of this.

Figure 8 exhibits empirical distributions of R2 statistics obtained from regressing QIDRes on each

of its intraday components. These estimates are carried out at the stock-quarter level, capturing

the association between QIDRes and the intraday component only using time-series variations.

Consistent with a declining informed trading risk over the course of the trading day, the association

between QIDRes and QIDRes(am) is strongest and that between QIDRes and QIDRes(pm)

is the weakest. Importantly, the clearly distinguishable locations of R2 empirical distributions

given different τ ’s is evidence of statistical dominance, which strongly speaks to the statistical and

economic significance of our findings. More concretely, the mean (median) stock-quarter-specific

R2’s are 65.8% (69.5%), 57.2% (59.9%), and 47.1% (47.7%) when variation in QIDRes is examined

against that in the underlying component from morning, mid-day, and evening, respectively. In

sum, a much larger portion of the variation in QIDRes is attributable to abnormal undercutting

activity in earlier trading hours rather than later windows.

We provide additional evidence using the intraday variation in the intensity of informed trading

by examining QID(τ)qjt’s behavior around unscheduled press releases.33 With higher intensity of

informed trading earlier in the day, we expect QIDRes(am)qjt to display greater spikes around

information events than do other intraday versions of QIDRed. Figure 9 documents exatly this.

5.7 Asset Pricing Implications of QIDRes

The literature has documented that informed trading risk measures predict stock returns: higher

past informed trading probability/intensity is associated with higher expected returns. However,

there is no theoretical or empirical consensus regarding what drives this return predictability.

For example, Easley and O’Hara (2004) argue that informed trading should be priced since the

risk driven by information asymmetry is non-diversifiable; hence, investors holding a stock with

more private information, and hence informed trading, demand a premium as compensation for

this exposure. Consistent with this prediction, Easley et al. (2002) show that PIN is priced

in the cross-section.34 Duarte and Young (2009) propose an alternative explanation for return

33Qualitative similar conclusions obtain around earnings announcements and other news arrivals.
34Also see, e.g., Kelly and Ljungqvist (2012) and Derrien and Kecskés (2013). In contrast, Lambert et al. (2012)

argue that in a perfectly competitive market, information asymmetry risk is diversifiable and hence should not be
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predictability of informed trading intensity/probability measures by showing that PIN ’s cross-

sectional return predictability primarily reflects liquidity premia. They argue that since informed

trading intensity is correlated with liquidity, PIN ’s return predictability conflates the effects of

information asymmetry with those of priced illiquidity (Amihud and Mendelson (1980)). Following

this literature, we also show that QIDRes predicts stock returns. However, we attribute this return

predictability to limits to arbitrage, reflecting the unique features of QIDRes.

In contrast to prior measures of informed trading, we do not expect any return predictability

demonstrated by QIDRes to be associated with compensation for bearing the risk associated with a

stock characteristic or the premium demanded to hold less liquid stocks. In fact, we provide strong

evidence that QIDRes fits neither of these notions. Table 7 presents the correlations between

QIDRes, ITI and PIN based information trading measures as well as common liquidity measures:

quoted spread, effective spread, lambda, Amihud, and ILM . Panel A presents the correlations

for 2010-2019 (omitting PIN measures where we only have data for 2010-2012) and Panel B

presents all measures for the 2010-2012 period. This table shows virtually zero cross-sectional

correlation between monthly averages of QIDRes and various measures of liquidity, and only

minimal correlation with other measures of informed trading. Panel A in Table A.1 presents

evidence that QIDRes is very weakly correlated with a host of stock characteristics. Finally, in

Panel B of Table A.1, we document evidence of slight mean-reversion in QIDRes, indicating that

is does not constitute a persistent stock characteristic.

Importnatly, the lack of correlation with liquidity is not true for other measures of informed

trading where different versions of ITI and PIN appear to be positively related to liquidity.

For example, Panel A shows that the average of the absolute correlation coefficients obtained

between different versions of ITI and various stock illiquidity measures is about 0.15, with the

highest pairwise absolute correlation of 0.37. Similarly, the average absolute correlation between

different versions of PIN and stock illiquidity measures is around 0.15, with a high pairwise absolute

correlation of 0.26. These collective facts clearly distinguish QIDRes from existing measures,

strongly suggesting that it cannot predict returns in the context of existing theories on return

predictability of informed trading risk. We next investigate whether QIDRes predicts returns.

priced, with Armstrong et al. (2011) providing empirical evidence supportive of this prediction.
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We begin this analysis using simple portfolio sorts.35 Table 8 shows that stocks with higher

QIDRes feature higher expected returns. For example, we find that average three-factor risk-

adjusted monthly return of the portfolio of stocks with the the highest past levels of informed

trading, i.e., stocks falling in the top QIDRes quintile in quarter q − 1, is 30bps higher than that

for the portfolio containing stocks with the lowest levels of informed trading, i.e., stocks falling in

the bottom QIDRes quintile in quarter q − 1. These quantitative findings extend when we form

test portfolios using QIDRes in quarter q − 2. Bogousslavsky et al. (2023) document next-month

return predictability using ITIs; hence, complementary to their results, our finding that QIDRes

predicts monthly returns two quarters forward indicates that QIDRes can predict future returns

over longer horizons.

We next fit cross-sectional regressions to examine return predictability of QIDRes while con-

troling for key stock characteristics. Our regression analysis estimates

RetRfj,q,m = γ0 + γ1 (QIDResj,q−1) + γ2 (QIDResj,q−2) + Λ⊤Controlj,q,m−1 + uj,q,m, (6)

where RetRfj,q,m is stock j’s return in month m of quarter q in excess of the corresponding 1-month

T-Bill rate; QIDResj,q−1 and QIDResj,q−2 denotes abnormal undercutting activity in quarters

q − 1 and q − 2, respectively, for stock j; Controlj,q,m−1 denotes the vector of controls including

betas from the three-factor Fama-French model, book-to-market ratio, market capitalization, divi-

dend yield, idiosyncratic volatility, previous month’s return, the return from the prior 11 months,

previous quarter’s share of institutionally held shares, previous quarter’s institutional ownership

concentration, and share turnover in month m− 2.

Table 9 summarizes our findings when we fit fixed-effect panel regressions based on equation (6):

we find a statistically significant positive association between QIDRes and expected stock returns.

This finding is robust to (1) including year-month fixed effects only versus including both year-

month and firm fixed effects, which we choose as our main specification; (2) to including institutional

ownership concentration and share turnover, reflecting the extent of competition for liquidity be-

35We work with a sample spanning January 2010 through August 2016, reflecting the significant impacts of TSP
on the level of undercutting for a large group of stocks (see Section 5.1). These empirical choices allow us to examine
the entire cross-section of NMS stocks with no TSP-driven gaps in the time-series of each stock. Unreported analysis
insures that qualitative findings are robust to, instead, excluding TSP stocks between September 2016 through
December 2018 when TSP was in effect, and using the remaining data in the 2010-2019 time period.
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tween potentially informed investors (Lambert et al. (2012)); and (3) augmenting the set of controls

with individual or all the five stock illiquidity measures, reflecting the main message of Duarte and

Young (2009) as a general concern that may apply to any measure of informed trading.

Table 10 formally contrasts the abilities of different informed trading intensity/probability mea-

sures in explaining the cross-section of expected returns. We estimate horse race regressions based

on modified specifications of equation (6) that include QIDRes and different sets of alternative

existing measures as independent variables subject to their availability. We find that the association

between QIDRes and expected returns remains in these regressions, and that most of the alterna-

tive measures do not load with a statistically significant coefficients. Notably, QIDRes is the only

measure that significantly predicts future returns in all specifications. We also note that ITIs are

not completely backward-looking measures of informed trading risk as Bogousslavsky et al. (2023)

train their machine learning algorithms using sub-sample of stock-days that are scatted over the

entire time-series, and hence, ITIs from quarters q − 1 and q − 2 may, by construction, contain

information about future returns. In sharp contrast, average QIDRes from quarters q−1 and q−2

are not conditional on any future trading or pricing outcome.

As discussed earlier, we may interpret the robust return predictability of QIDRes neither in

the context of Easley and O’Hara (2004)’s “stock characteristic” story, nor in the context of Duarte

and Young (2009)’s “illiquidity premia” story. This leads us to attribute the return predictability

of QIDRes to limits to arbitrage. Specifically, QIDRes does not differentiate between positive and

negative information, so if informed traders acting on positive and negative information is equally

likely, then we would not expect QIDRes to have any association with future returns. However,

reflecting the well-documented selling constraints (e.g. Saffi and Sigurdsson (2011), and Dixon

(2021)), it must be more difficult for investors to trade on negative information. As a result, high

QIDRes is more likely to capture informed trading motivated by positive, rather than negative,

signals; and thus should positively predict returns.36 Specifically, stocks with higher QIDRes in

a given quarter (1) experienced more information events than is normal in those quarters, and (2)

due to short selling constraints, these information events were, on average, positive.

We conclude by showing that return predictability of QIDRes is concentrated among stocks

with tighter short sale constraints. We do so by splitting the sample based on observed equilibrium

36See Bogousslavsky et al. (2023) for a similar discussion.
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lending fees in the securities lending markets. We examine QISRes’s return predictability condi-

tional on the level of lending fees, with higher such fees reflecting tighter short sale constraints.

From FIS data, we calculate average lending fee of each stock in quarter q−3, and then sort monthly

cross-section in the current quarter into terciles of this average security lending fee. Table 11 shows

that QIDRes predicts expected returns more strongly among stocks with high lending fees.

6 Conclusion

Despite the key importance of informed trading for different areas of financial economics, easy to

implement empirical measures of informed trading have proven difficult to derive. In this paper,

we propose an easy to compute and intuitive measure of informed trading risk which we refer to as

QIDRes. Our measure only requires trades and quotes data and thus can be computed for almost

all publicly traded stocks at the daily, or even finer, frequencies in any modern limit order market.

Our approach exploits the intuition that liquidity providers compete less to fill order flow if

they perceive the incoming marketable orders to be informed. Specifically, a liquidity provider’s

appetite to “undercut” rivals should significantly drop when they expect arrivals of informed mar-

ketable orders. We argue that abnormally low undercutting activity reveals the concerns of liquidity

providers about incoming informed orders and hence indirectly measures informed trading risk.

We contrast QIDRes with existing measures of informed trading intensity/probability whose

constructions are computationally demanding, require proprietary data, or are applicable to only

a subset of stock-days. We find that QIDRes performs as well as or better than these alternative

measures: (1) QIDRes spikes around periods known to be associated with informed trading such

as earnings announcements, unscheduled press releases, and news arrivals; (2) increases in QIDRes

predict imminent unscheduled information arrival events; (3) the magnitudes of the QIDRes spikes

are positively associated with the magnitudes of imminent information events; (4) stock prices

reverse less following days when QIDRes indicates higher informed trading risk; (5) episodes of

increased short selling activity are associated with higher QIDRes; and (6) stock-days with known

informed mutual-fund trades exhibit higher QIDRes.

We also show that QIDRes from the preceding two quarters predicts monthly stocks returns.

However, QIDRes is orthogonal to persistent stock characteristics, especially liquidity, indicating
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that its return predictability is distinct from liquidity premia as posited by Duarte and Young

(2009) about PIN . Moreover, consistent with the notion that informed trading should not be

predictable, QIDRes does not constitute a persistent stock characteristic either. Hence, we at-

tribute its return predictability to the asymmetry in limits to arbitrage that restrict trading based

on negative information. In fact, return predictability of QIDRes is concentrated among stocks

with tightest short sale constraints.
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Figures and Tables

Figure 2. Undercutting and Quoted Spreads.
The figure presents the relationship between undercutting activity, as measured by QID, and percent quoted
bid-ask spread. for each stock, both QID and the natural log of time-weighted percent quoted bid-ask spread,
constructed at the stock-day frequency, are averaged across all days in the sample. The scatter plot presents
the correlation between these two averages across stocks. The sample includes stock-days of NMS-listed
common shares between Jan 01, 2010 through Dec 31, 2019 with previous months’ closing prices of at least
$5, excluding stocks-dates for firms designated as treatment or control stocks during the SEC’s Tick Size
Pilot experiment.
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Figure 3. Relative Tick Size and Undercutting activity: Stock Splits and Reverse Splits.
The figure presents average QID around stock splits. Stock split and revere-split dates are obtained from
CRSP, with event windows covering 15 days prior to a split date and 15 day as of the split date. Averages
and 95% confidence intervals of QID (Panel A) and relative quoted spread (Panel B), both winsorized at
the 1st and 99th percentiles of each day if the main sample, are plotted against days from the event. The
sample includes stock-days of NMS-listed common shares between Jan 01, 2010 through Dec 31, 2019 that
coincide with stock-split event windows. Included stocks must minimum a daily closing price of $5 and must
feature non-missing observations over the event window. Stocks-dates for firms designated as treatment or
control stocks during the SEC’s Tick Size Pilot experiment are excluded.
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Figure 4. Existing Measures of Informed Trading around Unscheduled Corporate Announcements.
The figure presents medians of ITI, PIN , and MIA around around earnings announcements (EA), unscheduled press releases (PR), and news arrivals
not associated with any identified event (NA). Five versions of ITI and four PIN are considered. The sample includes all NMS-listed common stocks
with previous quarter-end’s share prices of at least $5. Sample period is Jan, 2010 through Dec, 2019 for ITI; Jan, 2010 through Dec, 2012 for
PIN ; and Jan, 2010 through Dec, 2018 for MIA. Stocks-dates for firms designated as treatment or control stocks during the SEC’s Tick Size Pilot
experiment are excluded. Earnings announcement dates are obtained from COMPUSTAT; unscheduled press release dates and news arrivals not
associated with any identified event are obtained from Ravenpack.
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Figure 5. Undercutting Activity, Liquidity, and Information Asymmetry around Scheduled
and Unscheduled Corporate Announcements.
The figure presents abnormal undercutting activity, dollar bid-ask spread, abnormal trading volume, and
abnormal daily absolute return around earnings announcements (EA), unscheduled press releases (PR),
and news arrivals not associated with any identified event (NA). Daily abnormal undercutting values are
calculated based on equation (4). Daily trading volume and absolute returns of each stock are normalized
relative to the stock-specific median of each respective variable from the previous calendar quarter. The
sample includes all NMS-listed common stocks between Jan, 2010 through Dec, 2019 with previous quarter-
end’s share prices of at least $5. Earnings announcement dates are obtained from COMPUSTAT; unscheduled
press release dates and news arrivals not associated with any identified event are obtained from Ravenpack.
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Figure 6. Undercutting Activity and Information Content of Trades, Events, and News.
Panels A through C present median abnormal undercutting activity around earnings announcements (EA), unscheduled press releases (PR), and news
arrivals not associated with any identified event (NA). Earnings announcements are classified into events with high earnings surprise score (SUE), i.e.,
top and bottom 20% of SUE scores in the respective quarter, and low/moderate SUE, i.e., the middle 60% of SUE scores in the respective quarter.
Both unscheduled press releases (PR) and news arrivals (NA) are classified into high post-announcement/-news 10-day return, i.e., the top 40% of
absolute 10-day compound return, and low post-announcement/-news 10-day return, i.e., the bottom 60% of absolute 10-day compound return. Daily
abnormal undercutting values are calculated based on equation (4). Panels D through F present medians of daily percentage effective spreads, realized
spreads and price impacts, all obtained from WRDS Intraday Indicators, around earnings announcements (EA), unscheduled press releases (PR), and
news arrivals not associated with any identified event (NA). The sample includes all NMS-listed common stocks between Jan, 2010 through Dec, 2019
with previous quarter-end’s share prices of at least $5, excluding stocks-dates for firms designated as treatment or control stocks during the SEC’s
Tick Size Pilot experiment. Earnings announcement dates are obtained from COMPUSTAT; SUE scores are obtained from I/B/E/S; unscheduled
press release dates and news arrivals not associated with any identified event are obtained from Ravenpack.
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Figure 7. Informed Trading measures and Short Selling Activity.
The figure presents averages of various informed trading measures across levels of short selling activity. For averages of daily informed trading measures
are calculated over bi-weekly intervals and matched with corresponding percentage change in short interest. each bi-weekly cross-section is sorted
into portfolio (deciles) of signed percentage change in short interest. Equal weighted means of informed trading measures are calculated across stocks
in each portfolio at the bi-weekly frequencies. The time-series averages are these means are plotted portfolio indexes, with 1 and 10 indexing the
portfolios of stocks with largest declines and increased, respectively, in short interest. Panel A, B, and C present results for ITI, PIN , and MIA
measures, respectively. Panel D presents results based on QIDRes where each bi-weekly cross-section is decomposed in to terciles of the most recent
short interest levels (defined as the most recent number of shares sold short by the total number of shares outstanding) before portfolios of percentage
change in short interest are formed within each tercile. Panel E presents results based on QIDRes where each bi-weekly cross-section is decomposed in
to terciles of market-capitalization (defined as the product of the most recent share price and the total number of shares outstanding) before portfolios
of percentage change in short interest are formed within each tercile. Daily QIDRes observations are adjusted relative to the respective cross-stock
average. The sample includes all NMS-listed common stocks between Jan, 2010 through Dec, 2019 with previous quarter-end’s share prices of at least
$5, excluding stocks-dates for firms designated as treatment or control stocks during the SEC’s Tick Size Pilot experiment.

Panel A: ITI measures Panel B : PIN measures Panel C : MIA measure

.4
.4

2
.4

4
.4

6
.4

8
Im

p
a

ti
e

n
t 

/ 
In

s
id

e
r 

/ 
S

h
o

rt
 I

T
I

.2
.2

5
.3

.3
5

1
3

F
 /

 P
a

ti
e

n
t 

IT
I

1 2 3 4 5 6 7 8 9 10
Portfolios of signed % change in short interest

13F Patient Impatient

Insider Short

.2
5

.2
5

5
.2

6
.2

6
5

O
W

R
P

IN

.4
.4

5
.5

.5
5

.6
P

IN
 /

 D
Y

P
IN

 /
 G

P
IN

1 2 3 4 5 6 7 8 9 10
Portfolios of signed % change in short interest

PIN DYPIN

GPIN OWRPIN

.4
.4

1
.4

2
.4

3
M

IA

1 2 3 4 5 6 7 8 9 10
Portfolios of signed % change in short interest

MIA

Panel D : QIDRes by short interest level Panel E : QIDRes by market-capitalization

−
.1

0
.1

.2
.3

M
a

rk
e

t−
a

d
ju

s
te

d
 Q

ID
R

e
s

1 2 3 4 5 6 7 8 9 10
Portfolios of signed % change in short interest

Low SI Intermediat SI High SI

−
.2

−
.1

0
.1

.2
M

a
rk

e
t−

a
d

ju
s
te

d
 Q

ID
R

e
s

1 2 3 4 5 6 7 8 9 10
Portfolios of signed % change in short interest

Small−cap Mid−cap Large−cap

43



Figure 8. Intraday Sources of Variation in QIDRes.
The figure presents the decomposition of the variation in QIDRes into into intraday components. In each
quarter q and for each stock j, QIDResqjt is regressed on intraday component QIDRes(τ)qjt, with τ ∈
{am,md, pm}. The R2 statistic from each regression for time-of-day τ is stored. The figure plots kernel
densities for empirical distributions of R2’s across stock-quarters by τ . The sample includes stock-days of
NMS-listed common shares between Jan 01, 2010 through Dec 31, 2019 with previous months’ closing prices
of at least $5, excluding stocks-dates for firms designated as treatment or control stocks during the SEC’s
Tick Size Pilot experiment.
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Figure 9. Undercutting Activity and Information Asymmetry around Unscheduled Corporate
Announcements by Dime of Day.
The figure presents abnormal undercutting activity at different time-of-day windows around unscheduled
press releases (PR). Intraday abnormal undercutting values are calculated based on equation (4) withQID(τ)
refelecting undercutting activity in time-of-day window τ ∈ {am,md, pm}. The sample includes all NMS-
listed common stocks between Jan, 2010 through Dec, 2019 with previous quarter-end’s share prices of at
least $5, excluding stocks-dates for firms designated as treatment or control stocks during the SEC’s Tick
Size Pilot experiment. Unscheduled press release dates are obtained from Ravenpack.
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Table 1. Summary Statistics: Quote Revisions, QID, and QIDRes.
Panel A reports summary statistics of NBBO revisions as well as undercutting and abnormal undercutting measures. For each stock j on day t,
NBBO improvements and deteriorations are counted separately for the bid (NBB) and ask (NBO) sides of the market. Trade-driven best quote
deteriorations reflecting quote updates recorded no later that 10 milliseconds after a trade are constructed separately. For both categories, the share
of single-tick updates devides the number of single-tick quote updates by all quote updates in the respective category. All quote improvements,
#Imprjt, reflect the sum of the corresponding best bid and ask side improvements. Trade-drive quote deteriorations, #DeterTradejt, reflect the sum
of corresponding trade-driven best bid and ask deteriorations. The undercutting activity measure, QID, is constructed according to equation (2).
Abnormal undercutting, QIDRes is constructed according to equation (4). QIDRes summary statistics are provided both before and after winsorizing
each daily cross-section at the 1st and 99th percentiles. The sample includes NMS common shares from January 2010 to December 2019, excluding
stocks whose previous month-end’s closing price is below $5 as well as stocks-dates for firms designated as treatment or control stocks during the
SEC’s Tick Size Pilot experiment. Panel B reports correlation coefficients between daily QIDResjt and contempranous measures of quoted, effective,
and realized spreads; price impacts, volatility, and trading volume.

Panel A: Summary statistics

Percentiles

Variable Observations Mean S.D. Skew 1st 5th 25th 50th 75th 95th 99th

All NBB revisions 6,662,352 1916.45 3167.51 29.51 2 17 337 1056 2394 6442 13066

NBB improvements 6,662,352 1046.47 1717.63 29.90 1 9 183 579 1320 3511 7046
Share of single-tick 6,662,352 0.79 0.28 −1.96 0.00 0.00 0.77 0.89 0.96 1.00 1.00

NBB deteriorations 6,662,352 869.98 1479.88 32.02 0 7 151 469 1068 2955 6108

Trade-driven NBB deteriorations 6,662,352 279.05 523.87 9.09 0 0 25 110 323 1096 2268
Share of single-tick 6,662,352 0.58 0.34 −0.37 0.00 0.00 0.33 0.61 0.91 1.00 1.00

All NBO revisions 6,662,352 1924.87 3146.58 16.76 1 17 341 1066 2403 6464 13091

NBO improvements 6,662,352 1052.88 1715.27 17.70 1 9 184 584 1326 3530 7081
Share of single-tick 6,662,352 0.79 0.28 −1.95 0.00 0.00 0.76 0.89 0.96 1.00 1.00

NBO deteriorations 6,662,352 872.00 1464.30 18.03 0 7 153 473 1070 2958 6100

Trade-driven NBO deteriorations 6,662,352 277.70 521.51 8.95 0 0 24 109 322 1094 2265
Share of single-tick 6,662,352 0.57 0.34 −0.35 0.00 0.00 0.32 0.61 0.91 1.00 1.00

QID 6,662,352 0.61 0.27 −0.42 0.03 0.12 0.41 0.64 0.84 0.99 1.00

QIDRes 6,662,352 0.07 1.52 1.53 −3.46 −1.85 −0.70 −0.01 0.77 2.20 4.23

QIDRes (winsorized at 1st/99th percentile) 6,662,352 0.07 1.38 1.46 −3.12 −1.85 −0.70 −0.01 0.77 2.20 3.77

Panel B: Correlation coefficients between daily QIDRes and contemporanous microstructure outcomes

Microstructure outcome Quoted spread Effective spread Realized spread Piece Impact Volatility Trading
Dollar Relative Dollar Relative Dollar Relative Dollar Relative Realized |Daily return| volume

Correlation coefficient 0.0465 0.059 −0.0001 0.005 −0.0001 −0.0032 0.0025 0.0052 −0.0011 0.0009 0.0045
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Table 2. Minimum Tick Size and the Undercutting Activity.
The table presents estimated impacts of an exogenous change in the minimum quoting and trading increment,
i.e., tick size, on undercutting activity for differentially tick-constrained stocks. QID is the difference between
the daily number of NBBO improvements and the number of trade-driven NBBO deteriorations, divided by
the total number of NBBO updates. Impr divides the number of NBBO improvements by the number of
NBBO updates. DeterTrade divides the number of trade-driven NBBO deteriorations by the number of
NBBO updates Panel A presents the impacts of an increase in tick size from 1¢ to 5¢, using data from
08/12/2016-12/14/2016, for stocks with different tick constraint status prior to tick size increase. Stocks are
classified into four tick constraint bins according to the average May and June 2016 quoted spreads of: (1)
no more than 5¢, (2) 5¢ to 10¢, (3) 10¢ to 15¢, and (4) greater than 15¢. Panel B presents the impacts of a
reduction in tick size from 5¢ to 1¢, using data from 08/08/2018-11/20/2018, for stocks with different tick
constraint status prior to tick size reduction. Stocks are classified into four tick constraint bins according
to the average May and June 2018 quoted spreads of: (1) no more than 5.5¢, (2) 5.5¢ to 10¢, (3) 10¢ to
15¢, and (4) greater than 15¢. Equation (5) is estimated using median (quantile) and OLS regressions.
Estimates control for date fixed effects and double-cluster standard errors by stock and date. The numbers
in brackets are t-statistics with ***, **, and * identifying statistical significance at the 1%, 5%, and 10%
levels, respectively.

Panel A: TSP imposition

QR OLS

Dependent variable: May & June 2016 quoted spread group May & June 2016 quoted spread group
QID (1) (2) (3) (4) (1) (2) (3) (4)

Pilot× Event −0.36*** −0.51*** −0.37*** −0.29*** −0.38*** −0.60*** −0.52*** −0.32***
[−18.07] [−17.01] [−11.80] [−11.80] [−20.89] [−35.33] [−20.12] [−13.18]

Median/Mean of control 0.11 0.54 0.70 0.74 0.16 0.50 0.64 0.65

Impr

P ilot× Event −0.043*** −0.061*** −0.074*** −0.079*** −0.030*** −0.065*** −0.075*** −0.054***
[−19.83] [−18.52] [−16.33] [−12.43] [−19.96] [−30.41] [−22.36] [−11.00]

DeterTade

P ilot× Event 0.090*** 0.098*** 0.075*** 0.052*** 0.087*** 0.12*** 0.100*** 0.056***
[18.24] [15.58] [11.02] [9.51] [24.14] [33.99] [17.75] [10.64]

Panel B: TSP conclusion

QR OLS

Dependent variable: May & June 2018 quoted spread bin May & June 2018 quoted spread bin
QID (1) (2) (3) (4) (1) (2) (3) (4)

Pilot× Event 0.23*** 0.64*** 0.54*** 0.27*** 0.33*** 0.52*** 0.54*** 0.27***
[9.54] [26.90] [18.30] [11.63] [15.51] [38.45] [28.99] [13.21]

Median/Mean of control −0.01 0.35 0.38 0.46 0.02 0.33 0.37 0.42

Impr

P ilot× Event 0.010*** 0.059*** 0.078*** 0.060*** 0.0059*** 0.032*** 0.061*** 0.048***
[5.52] [14.48] [16.23] [9.88] [4.55] [15.68] [16.38] [9.82]

DeterTade

P ilot× Event −0.053*** −0.12*** −0.11*** −0.049*** −0.078*** −0.12*** −0.11*** −0.051***
[−8.98] [−21.92] [−18.14] [−10.57] [−15.86] [−39.42] [−25.58] [−12.39]
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Table 3. Probability of Unscheduled Press Releases and Recent QIDRes.
This table reports in the predictive power of QIDRes for the likelihood of imminent unscheduled press
releases (PR). Panel A fit logit regressions of day t probability of PR conditional on the most recent 5-day
change in QIDRes. Panel A fit logit regressions of day t probability of PR conditional on the most recent
5-day changes in QIDRes, bid-ask spread (qsp), trading volume (tv), and absolute daily return |r| as well as
arrivals of information events, including earnings announcements (EA); press releases (PR); or news arrivals
(NA) over days t − 5 through t − 1, specified using indicator variables I(Inf)t−1 through I(Inf)t−5. All
estimates control for firm fixed effects. The sample includes NMS common shares from January 2010 to
December 2019, excluding stocks whose previous month-end’s closing price is below $5 as well as stocks-
dates for firms designated as treatment or control stocks during the SEC’s Tick Size Pilot experiment. The
numbers in brackets are t-statistics with ***, **, and * identifying statistical significance at the 1%, 5%, and
10% level, respectively.

Panel A: Logit estimates of the probability of PR conditional on QIDRes

Independent Year
variable 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

∆QIDRest−1 0.049*** 0.052*** 0.043*** 0.033*** 0.040*** 0.042*** 0.062*** 0.030*** 0.052*** 0.079***
[9.50] [12.27] [9.65] [7.79] [10.51] [10.39] [13.21] [5.93] [9.52] [18.80]

Observations 285,847 408,344 402,579 434,403 482,783 502,762 447,180 226,810 260,723 575,013

Panel B: Logit estimates of the probability of PR conditional on QIDRes and controls

Independent Year
variable 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

∆QIDRest−1 0.037*** 0.043*** 0.028*** 0.026*** 0.028*** 0.033*** 0.048*** 0.026*** 0.045*** 0.057***
[6.52] [9.53] [5.87] [5.57] [6.60] [7.50] [9.62] [4.78] [7.80] [12.65]

∆qspt−1 −0.33*** −0.29*** −0.26*** −0.092 −0.071 −0.16** −0.11 −0.094 −0.34*** −0.031
[−2.59] [−2.98] [−3.68] [−1.44] [−1.37] [−2.51] [−1.28] [−0.99] [−4.51] [−0.63]

∆tvt−1 0.039*** 0.034*** 0.065*** 0.045*** 0.052*** 0.050*** 0.055*** 0.060*** 0.045*** 0.062***
[9.96] [10.30] [15.96] [10.94] [13.20] [12.77] [13.19] [12.24] [9.54] [13.66]

∆|r|t−1 0.018*** 0.021*** 0.014*** 0.0050 0.0041 −0.0035 −0.011*** −0.020*** −0.013*** −0.0030
[5.31] [7.29] [3.55] [1.33] [1.23] [−1.11] [−3.14] [−3.64] [−2.99] [−0.98]

I[Inf ]t − 1 0.73*** 0.63*** 0.85*** 0.64*** 0.71*** 0.92*** 0.95*** 0.56*** 0.67*** 1.03***
[34.68] [37.60] [44.27] [37.78] [46.58] [58.20] [53.12] [26.59] [32.06] [66.36]

I[Inf ]t − 2 0.093*** 0.035* 0.0026 −0.0036 0.028* 0.071*** 0.062*** 0.040* 0.14*** 0.12***
[4.06] [1.95] [0.12] [−0.20] [1.67] [4.00] [3.10] [1.81] [6.55] [6.87]

I[Inf ]t − 3 0.042* 0.047*** −0.012 0.0066 0.035** 0.053*** 0.083*** 0.080*** 0.11*** 0.11***
[1.81] [2.59] [−0.56] [0.36] [2.09] [2.95] [4.09] [3.60] [5.20] [6.44]

I[Inf ]t − 4 0.041* 0.055*** 0.0020 −0.045** 0.0065 0.041** 0.046** 0.070*** 0.072*** 0.16***
[1.75] [3.00] [0.09] [−2.41] [0.39] [2.30] [2.27] [3.13] [3.25] [9.11]

I[Inf ]t − 5 0.10*** 0.17*** 0.035 0.055*** 0.070*** 0.059*** 0.062*** 0.059*** 0.12*** 0.19***
[4.34] [9.67] [1.62] [3.01] [4.17] [3.29] [3.03] [2.67] [5.56] [11.09]

Observations 275,157 395,593 387,235 417,403 465,960 486,121 433,618 221,401 254,999 558,273
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Table 4. Probability of news arrivals and Recent QIDRes.
This table reports in the predictive power of QIDRes for the likelihood of imminent news arrivals (NA).
Panel A fit logit regressions of day t probability of NA conditional on the most recent 5-day change in
QIDRes. Panel B fit logit regressions of day t probability of NA conditional on the most recent 5-day
changes in QIDRes, bid-ask spread (qsp), trading volume (tv), and absolute daily return |r| as well as
arrivals of information events, including earnings announcements (EA); press releases (PR); or news arrivals
(NA) over days t − 5 through t − 1, specified using indicator variables I(Inf)t−1 through I(Inf)t−5. All
estimates control for firm fixed effects. The sample includes NMS common shares from January 2010 to
December 2019, excluding stocks whose previous month-end’s closing price is below $5 as well as stocks-
dates for firms designated as treatment or control stocks during the SEC’s Tick Size Pilot experiment. The
numbers in brackets are t-statistics with ***, **, and * identifying statistical significance at the 1%, 5%, and
10% level, respectively.

Panel A: Logit estimates of the probability of NA conditional on QIDRes

Independent Year
variable 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

∆QIDRest−1 0.0096** 0.018*** 0.014*** 0.0095*** 0.019*** 0.014*** 0.019*** 0.0042 0.0097*** 0.020***
[2.04] [4.85] [3.99] [2.82] [5.61] [4.00] [5.18] [1.11] [2.61] [6.77]

Observations 264,162 392,899 390,291 434,513 469,206 486,223 424,563 223,100 260,629 584,506

Panel B: Logit estimates of the probability of NA conditional on QIDRes and controls

Independent Year
variable 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

∆QIDRest−1 0.0054 0.013*** 0.0079** 0.0057 0.0083** 0.0079** 0.014*** −0.00014 0.0036 0.0060*
[1.07] [3.34] [2.14] [1.60] [2.27] [2.07] [3.43] [−0.03] [0.93] [1.95]

∆qspt−1 −0.26** −0.13 −0.26*** −0.16*** −0.060 −0.11* −0.099 −0.066 −0.21*** −0.057*
[−1.98] [−1.38] [−4.60] [−3.22] [−1.25] [−1.82] [−1.37] [−0.93] [−4.13] [−1.77]

∆tvt−1 0.021*** 0.012*** 0.025*** 0.026*** 0.040*** 0.029*** 0.035*** 0.035*** 0.026*** 0.031***
[6.39] [4.24] [7.44] [7.57] [11.47] [8.88] [10.66] [9.53] [7.49] [9.40]

∆|r|t−1 0.012*** 0.014*** 0.011*** 0.021*** 0.017*** 0.018*** 0.0058** 0.0030 −0.00069 0.0100***
[3.69] [5.48] [3.28] [7.16] [5.47] [6.42] [1.99] [0.69] [−0.24] [4.75]

I[Inf ]t − 1 0.17*** 0.21*** 0.24*** 0.21*** 0.27*** 0.26*** 0.23*** 0.21*** 0.29*** 0.38***
[9.19] [15.06] [16.79] [15.86] [19.99] [19.69] [16.23] [13.84] [21.66] [36.12]

I[Inf ]t − 2 0.16*** 0.13*** 0.19*** 0.14*** 0.24*** 0.18*** 0.13*** 0.19*** 0.19*** 0.23***
[8.66] [9.02] [12.96] [10.99] [17.76] [13.10] [8.74] [12.68] [14.16] [21.82]

I[Inf ]t − 3 0.052*** 0.074*** 0.15*** 0.15*** 0.23*** 0.12*** 0.13*** 0.099*** 0.16*** 0.16***
[2.74] [5.12] [9.97] [11.65] [17.52] [8.66] [9.13] [6.53] [11.84] [14.57]

I[Inf ]t − 4 0.053*** 0.099*** 0.10*** 0.050*** 0.11*** 0.11*** 0.081*** 0.11*** 0.16*** 0.15***
[2.75] [6.86] [6.79] [3.77] [8.19] [8.16] [5.50] [7.19] [11.96] [14.25]

I[Inf ]t − 5 0.13*** 0.16*** 0.15*** 0.12*** 0.11*** 0.16*** 0.15*** 0.13*** 0.17*** 0.18***
[6.95] [11.28] [10.49] [9.07] [8.26] [11.58] [10.09] [8.43] [12.17] [17.06]

Observations 254,568 380,563 375,202 418,031 450,407 468,964 411,449 218,048 254,752 566,665
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Table 5. Informed Trading Measures around Informed Trades of Mutual Funds.
The table reports the incremental differences in various measures of informed trading around informed trades of mutual funds. Measures of informed
trading are compared between stock-days around institutional buys and sells involved in Industry-Neutral Self-Financed Informed-Trades of Barardehi
et al. (2022) and other stock-days. For each informed trading measure Y j

t , the ηi coefficient from the following regression is reported: Y j
t =

η0 + ηi × I(t − i, t+ i)jt + ϵjt , where I(t − i, t+ i)jt is an indicator function that equals 1 in the i ∈ {0, 1, 2} days surrounding an INSFIT trade on t,
and equals 0 otherwise. The model is fit once using INSFIT buy trade indicators and once using INSFIT sell trade indicators. All estimates control
for firm and date fixed effects. The sample includes NMS common shares from January 2010 to September 2011, excluding stocks whose previous
month-end’s closing price is below $5. The numbers in brackets are t-statistics with ***, **, and * identifying statistical significance at the 1%, 5%,
and 10% level, respectively.

Panel A: Difference in informed trading measures around INSFIT buys trades

INSFIT Informed trading measure
trade window QIDRes ITI13D ITIpatient ITIimpatient ITIinsider ITIshort PIN DY PIN GPIN OWRPIN MIA

t 0.083*** 0.014*** 0.0058*** 0.015*** 0.0054*** 0.0074*** 0.022*** 0.031*** −0.0043 −0.0054** −0.0035
[5.46] [7.73] [3.49] [10.45] [3.07] [10.60] [3.75] [4.79] [−0.68] [−2.15] [−0.52]

[t− 1, t+ 1] 0.071*** 0.0072*** 0.0028** 0.0084*** 0.0030** 0.0045*** 0.016*** 0.019*** −0.0014 −0.0067** −0.00097
[3.94] [4.73] [2.03] [6.72] [2.44] [8.03] [3.03] [3.82] [−0.31] [−1.97] [−0.25]

[t− 2, t+ 2] 0.066*** 0.0056*** 0.0015 0.0068*** 0.0025** 0.0036*** 0.011** 0.017*** −0.0015 −0.0067** −0.0040
[3.94] [4.17] [1.22] [5.92] [2.40] [7.23] [2.31] [3.92] [−0.39] [−2.03] [−1.17]

Sample mean 0.0112 0.3041 0.2225 0.4395 0.4401 0.4252 0.5679 0.5317 0.4337 0.2712 0.3128

Panel B: Difference in informed trading measures around INSFIT sell trades

INSFIT Informed trading measure
trade window QIDRes ITI13D ITIpatient ITIimpatient ITIinsider ITIshort PIN DY PIN GPIN OWRPIN MIA

t 0.068*** 0.013*** 0.0080*** 0.013*** −0.0011 0.0054*** 0.040*** 0.033*** 0.011 0.0061* −0.0095
[3.42] [6.08] [3.79] [7.38] [−0.50] [5.91] [5.96] [3.99] [1.50] [1.82] [−1.18]

[t− 1, t+ 1] 0.056*** 0.0097*** 0.0048*** 0.0091*** 0.00056 0.0042*** 0.022*** 0.015*** 0.0034 0.0035 −0.0045
[3.42] [6.31] [3.62] [7.26] [0.45] [6.59] [4.19] [2.79] [0.71] [1.32] [−0.94]

[t− 2, t+ 2] 0.050*** 0.0075*** 0.0045*** 0.0077*** 0.00061 0.0032*** 0.017*** 0.015*** 0.0034 0.0019 −0.0047
[3.31] [5.50] [3.69] [6.74] [0.58] [5.86] [3.52] [3.20] [0.86] [0.74] [−1.16]

Sample mean 0.0365 0.3061 0.2278 0.4401 0.4353 0.4243 0.5875 0.5415 0.4565 0.2713 0.3322
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Table 6. Price Reversals by Abnormal Undercutting Activity and Realized Volatility.
This table reports the extent of price reversal over the next 10 trading days conditional on day t abnormal undercutting activity and realized volatility.
For Panel A results, each daily cross-section is sorted into terciles of QIDRes. For each such tercile panel regressions of compound returns over the next
n ∈ {1, 2, . . . , 10} days from day t’s close, denoted CRj

t,t+n, on day t returns, denoted Rj
t , are estimated. For Panel B results, each daily cross-section

is sorted independently into terciles of QIDRes and realized volatility, qvol. For each of the nine categories, panel regressions of compound returns
over 1 day forward (CRj

t,t+1), 5 days forward (CRj
t,t+5), and 10 days forward (CRj

t,t+10), on day t returns, denoted Rj
t , are estimated. Regressions

control for stock and date fixed effects and double-cluster standard errors at both date and stock levels. All return cross-sections are winsorized at
1% and 99%. Estimates are reported by QIDRes tercile and n (Panel A) or by QIDRes and volatility terciles (Panel B). The sample includes all
NMS-listed common stocks between Jan, 2010 through Dec, 2019 with previous quarter-end’s share prices of at least $5 as well as stocks-dates for
firms designated as treatment or control stocks during the SEC’s Tick Size Pilot experiment. The numbers in brackets are t-statistics with ***, **,
and * identifying statistical significance at the 1%, 5%, and 10% level, respectively.

Panel A: Price reversals up to 10 days forward by day-t QIDRes tercile

Dependent Variable
QIDRes tercile CRt,t+1 CRt,t+2 CRt,t+3 CRt,t+4 CRt,t+5 CRt,t+6 CRt,t+7 CRt,t+8 CRt,t+9 CRt,t+10

Low −0.053*** −0.057*** −0.070*** −0.078*** −0.084*** −0.088*** −0.089*** −0.093*** −0.10*** −0.097***
[−4.20] [−4.33] [−4.97] [−5.54] [−6.06] [−6.28] [−6.39] [−6.76] [−7.70] [−7.24]

Medium −0.051*** −0.056*** −0.066*** −0.074*** −0.076*** −0.081*** −0.083*** −0.087*** −0.092*** −0.090***
[−3.53] [−3.81] [−4.32] [−4.83] [−5.02] [−5.33] [−5.62] [−5.87] [−6.62] [−6.32]

High −0.025*** −0.030*** −0.038*** −0.044*** −0.047*** −0.050*** −0.054*** −0.054*** −0.059*** −0.057***
[−3.22] [−3.63] [−4.42] [−5.03] [−5.34] [−5.51] [−5.96] [−5.96] [−6.55] [−6.21]

Panel B: Price reversals 1, 5, and 10 days forward by day-t QIDRes and realized volatility terciles

Dependent variable
CRt,t+1 CRt,t+5 CRt,t+10

Realized volatility tercile Realized volatility tercile Realized volatility tercile
QIDRes tercile Low Medium High Low Medium High Low Medium High

Low Slope −0.056*** −0.055*** −0.046*** −0.092*** −0.084*** −0.076*** −0.099*** −0.10*** −0.090***
[−3.73] [−4.00] [−5.25] [−5.55] [−5.56] [−6.59] [−6.17] [−6.58] [−7.45]

Observations 536,727 539,164 538,302 536,727 539,164 538,302 536,727 539164 538302

Medium Slope −0.047*** −0.051*** −0.054*** −0.070*** −0.073*** −0.085*** −0.080*** −0.092*** −0.098***
[−4.59] [−2.76] [−3.96] [−5.96] [−3.81] [−5.64] [−6.49] [−5.08] [−6.69]

Observations 538,961 538,924 540,782 538,961 538,924 540,782 538,961 538,924 540,782

High Slope −0.024*** −0.023*** −0.026*** −0.045*** −0.044*** −0.052*** −0.053*** −0.058*** −0.060***
[−3.48] [−2.87] [−3.30] [−5.15] [−4.70] [−5.42] [−5.38] [−5.66] [−5.98]

Observations 540,265 539,962 540,681 540,265 539,962 540,681 540,265 539,962 540,681
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Table 7. Correlation between Informed Trading Measures and Stock Illiquidity.
This table presents the correlations matrices of informed trading measures and stock illiquidity. Panel A
reports on the correlations between QIDRes (indexed 1); five versions of ITI (indexed 2 through 6); and
five illiquidity measures, time-weighted dollar quoted spread (QSP ), size-weighted dollar effective srpead
(EFSP ), Kyle’s λ (Lambda), Barardehi et al. (2021)’s open-to-close Amihud measure (AM), and Barardehi
et al. (2023)’s retail-based institutional liquidity measure (ILMV ), indexed 11 through 15, for the 2010-
2019 sample sample. Panel B reports on the correlations between QIDRes, indexed 1; five versions of ITI,
indexed 2 through 6; four versions of PIN , indexed 7 through 10; and five illiquidity measures, QSP , EFSP .
Lambda, AM , and ILMV , indexed 7 through 11, for the 2010-2012 sample, where we have access to PIN
measures. All measures are constructed at the monthly frequency by averaging daily observations.

Panel A: Correlation between, QIDRes, ITI, and illiquidity, the 2010-2019 sample

Variable Variable index

index 1 2 3 4 5 6 7 8 9 10

1 QIDRes

2 ITI13D 0.10

3 ITIpatient 0.12 0.79

4 ITIimpatient 0.11 0.73 0.56

5 ITIinsider 0.01 0.35 0.39 0.38

6 ITIshort 0.14 0.44 0.36 0.63 0.17

7 QSP −0.01 −0.11 −0.08 −0.17 0.06 −0.23

8 EFSP 0.00 −0.13 −0.09 −0.19 0.05 −0.25 0.97

9 Lambda 0.03 −0.12 −0.03 −0.28 0.09 −0.31 0.24 0.29

10 AM 0.01 −0.10 −0.05 −0.22 −0.01 −0.21 0.27 0.31 0.57

11 ILM 0.03 −0.18 −0.05 −0.35 0.05 −0.37 0.37 0.42 0.60 0.47

Panel B : Correlation between, QIDRes, ITI, PIN and illiquidity, the 2010-2012 sample

Variable Variable index

index 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 QIDRes

2 ITI13D 0.09

3 ITIpatient 0.08 0.80

4 ITIimpatient 0.11 0.75 0.59

5 ITIinsider −0.02 0.34 0.31 0.41

6 ITIshort 0.08 0.51 0.49 0.67 0.28

7 PIN 0.04 0.33 0.33 0.38 0.13 0.53

8 DY PIN 0.04 0.31 0.30 0.34 0.16 0.43 0.61

9 GPIN 0.05 −0.01 0.00 0.02 −0.07 0.09 0.03 0.02

10 OWRPIN −0.01 −0.01 0.01 −0.03 0.01 −0.06 −0.05 −0.01 −0.02

11 QSP −0.02 −0.04 −0.08 −0.04 0.06 −0.21 −0.17 −0.11 −0.17 0.07

12 EFSP −0.02 −0.04 −0.08 −0.04 0.06 −0.23 −0.18 −0.12 −0.17 0.09 0.93

13 Lambda 0.00 −0.05 −0.05 −0.13 0.16 −0.24 −0.22 −0.12 −0.21 0.21 0.28 0.28

14 AM 0.00 −0.03 −0.02 −0.10 0.02 −0.17 −0.14 −0.09 −0.11 0.13 0.14 0.15 0.66

15 ILM −0.02 0.02 0.01 −0.06 0.18 −0.27 −0.26 −0.15 −0.22 0.10 0.44 0.42 0.63 0.41
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Table 8. Informed Trading Alphas.
This table presents excess returns as well as three-, four-, and six-factor alphas conditional on our measure of
informed trading. Each month m cross-section in quarter q is sorted into quintiles of QIDRes from quarter
q−1 (Panel A) or from quarter q−2 (Panel B), with quintles formed based in NYSE breakpoints. The time
series averages of monthly equally weighted portfolio returns as well that for the long-short (High−Low)
portfolio, after subtracting the 1-month Treasury-bill rate, are reported as “excess returns.” The 3-factor
alphas reflect the intercept of time-series regressions of portfolio excess returns on Fama-French three factors.
The 4-factor alphas reflect the intercepts when the 3-factor models are augmented with the momentum factor.
The 6-factor alphas reflect the intercepts when 4-factor models are augmented by profitability and investment
factors. The sample contains NMS common shares with previous month-end’s closing prices of at least $5
from the January 2010 through August 2016. Standard errors are Newey-West-corrected using 12 lags. The
numbers in brackets are t-statistics with ***, **, and * identifying statistical significance at the 1%, 5%, and
10% level, respectively.

Panel A: Monthy returns to portfolios QIDRes from quarter q − 1

QIDRes quintile
Monthly portfolio return Low 2 3 4 High High−Low

Excess return 1.00** 1.10** 1.15*** 1.35*** 1.18*** 0.18
[2.41] [2.60] [2.68] [3.16] [3.12] [1.57]

3-factor alpha −0.20** 0.024 0.085 0.30*** 0.095 0.30**
[−2.26] [0.29] [0.93] [4.32] [1.09] [2.24]

4-factor alpha −0.17** 0.033 0.097 0.30*** 0.11 0.28***
[−2.32] [0.36] [1.15] [4.33] [1.37] [2.69]

6-factor alpha −0.21*** 0.040 0.11 0.29*** 0.11 0.32***
[−2.75] [0.44] [1.37] [3.98] [1.49] [3.10]

Panel B: Monthy returns to portfolios QIDRes from quarter q − 2

QIDRes quintile
Monthly portfolio return Low 2 3 4 High High−Low

Excess return 1.04*** 1.07*** 1.21*** 1.21*** 1.28*** 0.24*
[2.69] [2.93] [3.08] [3.03] [3.08] [1.72]

3-factor alpha −0.16 −0.069 0.089 0.13 0.19*** 0.35**
[−1.29] [−0.73] [1.36] [1.47] [3.01] [2.13]

4-factor alpha −0.19 −0.072 0.073 0.13 0.17** 0.37*
[−1.46] [−0.78] [1.28] [1.55] [2.13] [1.98]

6-factor alpha −0.17 −0.042 0.10** 0.14* 0.17** 0.34*
[−1.36] [−0.41] [2.00] [1.70] [2.09] [1.93]
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Table 9. The Cross-Section of Expected Returns and Abnormal Undercutting Activity. This
table reports on the relation between undercutting activity and the cross-section of expected returns. Equa-
tion (6) is estimated using QIDRes constructed in the preceding two quarters and 5 liquidity measures
constructed in month m − 2. Other controls include three-factor Fama-French betas three-factor Fama-
French betas (βmkt

j,m−1, β
hml
j,m−1, β

smb
j,m−1), estimated using weekly observations from the two-year period ending

in the final full week of month m−1, book-to-market ratio, (BMj,m−1), natural log of market capitalization,
(ln(Mcapj,m−12)), dividend yield (DYDj,m−1), defined as total dividends over the past 12 months divided
by the share price at the end of month m− 1, idiosyncratic volatility (IdVolj,m−1), previous month’s return
(RETj,m−1), preceding return from the prior 11 months (RETj,(m−12,m−2)), and previous quarter’s fraction
institutionally owned shares outstanding (IOShrj,q−1). The previous quarter’s Herfindahl-Hirschman index
for institutional ownership (IOShrHHIj,q−1) and month m−2 share turnover (TOj,m−2) serve as measures
of market competition. Estimates are from panel regressions that control for firm and month-year fixed ef-
fects, double clustering standard errors by these two dimensions. The sample includes NMS common shares
from January 2010 to December 2019, excluding stocks whose previous month-end’s closing price is below $5
as well as stocks-dates for firms designated as treatment or control stocks during the SEC’s Tick Size Pilot
experiment. The numbers in brackets are t-statistics with ***, **, and * identifying statistical significance
at the 1%, 5%, and 10% level, respectively.

Independent Illiquidity measures
Variable QSP EFSP Lambda AM ILM

QIDResq−1 0.17*** 0.21*** 0.23*** 0.21*** 0.21*** 0.21*** 0.21*** 0.21*** 0.21*** 0.23***
[2.75] [3.17] [3.52] [3.23] [3.22] [3.17] [3.16] [3.21] [3.27] [3.60]

QIDResq−2 0.047 0.084 0.091* 0.088 0.087 0.084 0.083 0.084 0.087 0.095*
[0.84] [1.54] [1.68] [1.62] [1.61] [1.54] [1.53] [1.56] [1.62] [1.76]

Illiquidity −1.13** −2.38*** 0.0096 −0.36 0.23
[−2.39] [−2.91] [0.08] [−1.02] [0.46]

βmkt −0.13 0.26 0.29 0.26 0.25 0.26 0.25 0.26 0.26 0.28
[−0.45] [1.28] [1.45] [1.28] [1.26] [1.28] [1.26] [1.31] [1.30] [1.44]

βhml −0.18 −0.15 −0.14 −0.15 −0.15 −0.15 −0.15 −0.15 −0.15 −0.15
[−1.10] [−0.97] [−0.93] [−0.98] [−0.99] [−0.98] [−0.97] [−0.97] [−0.99] [−0.95]

βsmb 0.064 0.076 0.089 0.075 0.075 0.074 0.072 0.077 0.072 0.085
[0.44] [0.51] [0.60] [0.51] [0.51] [0.50] [0.49] [0.52] [0.49] [0.58]

BM 0.27** 1.02*** 1.09*** 1.00*** 1.00*** 1.02*** 1.04*** 1.02*** 1.00*** 1.07***
[2.15] [3.03] [3.31] [2.99] [2.98] [3.00] [3.07] [3.03] [2.96] [3.25]

ln(Mcap) −0.0098 −2.45*** −2.43*** −2.41*** −2.41*** −2.45*** −2.46*** −2.44*** −2.39*** −2.39***
[−0.23] [−10.07] [−9.99] [−10.10] [−10.05] [−10.03] [−10.07] [−9.98] [−9.94] [−9.96]

DYD 0.38 −0.42 −0.16 −0.69 −0.70 −0.43 −0.44 −0.39 −0.67 −0.47
[0.19] [−0.21] [−0.08] [−0.35] [−0.35] [−0.21] [−0.22] [−0.20] [−0.34] [−0.24]

Id. Vol. −0.21** −0.072 −0.058 −0.067 −0.065 −0.073 −0.070 −0.070 −0.064 −0.052
[−2.37] [−1.00] [−0.83] [−0.93] [−0.90] [−1.01] [−0.97] [−0.98] [−0.88] [−0.72]

RET−1 −1.09 −4.45*** −4.46*** −4.48*** −4.48*** −4.44*** −4.44*** −4.45*** −4.48*** −4.48***
[−1.01] [−4.09] [−4.09] [−4.11] [−4.11] [−4.09] [−4.10] [−4.09] [−4.12] [−4.12]

RET(−12,−2) 0.36 −1.77*** −1.74*** −1.73*** −1.72*** −1.77*** −1.77*** −1.76*** −1.70*** −1.69***

[1.29] [−5.98] [−5.76] [−5.92] [−5.89] [−5.94] [−5.97] [−5.80] [−5.64] [−5.58]

IOShr 0.43*** −0.94*** −1.39*** −0.97*** −0.98*** −0.93*** −0.95*** −0.93*** −0.96*** −1.41***
[2.78] [−3.18] [−4.21] [−3.29] [−3.34] [−3.17] [−3.23] [−3.17] [−3.29] [−4.25]

IOShrHHI −1.75*** −1.69***
[−3.44] [−3.26]

TO −31.0** −33.1***
[−2.46] [−2.64]

Month FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Stock FE No Yes Yes Yes Yes Yes Yes Yes Yes Yes

Observations 234,110 234,026 234,026 234,026 234,026 233,564 234,026 234,026 233,564 233,564
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Table 10. The Cross-Section of Expected Returns and Informed Trading: Horse Race Re-
gressions. This table reports on the relation informed trading measures and the cross-section of expected
returns. equation (6) is estimated using QIDRes, along with different subsets of other informed trading
measures, from the preceding two quarters. Control variables contain the full set of controls used in Table 9.
The sample periods 2010-2019, 2010-2018, and 2010-2012 reflect the availability of alternative measures
ITIs, MIA, and PIN , respectively. The samples include all NMS common shares, excluding stocks whose
previous month-end’s closing price is below $5 as well as stocks-dates for firms designated as treatment or
control stocks during the SEC’s Tick Size Pilot experiment. All estimates control for year-month and stock
fixed effects, and standard errors are double-clustered at both levels. The numbers in brackets are t-statistics
with ***, **, and * identifying statistical significance at the 1%, 5%, and 10% level, respectively.

RHS variable 2010-2019 sample 2010-2018 sample 2010-2012 sample

QIDResq−1 0.22*** 0.20** 0.21** 0.23 0.20 0.21 0.25
[3.07] [2.39] [2.50] [1.53] [1.37] [1.34] [1.15]

QIDResq−2 0.092* 0.10 0.087 0.28** 0.26** 0.27** 0.41***
[1.67] [1.50] [1.29] [2.41] [2.35] [2.24] [3.01]

ITI13D,q−1 0.35 0.47 −1.16 −1.05 −3.96
[0.29] [0.30] [−0.34] [−0.31] [−1.12]

ITI13D,q−2 −1.94 −2.00 −4.41 −4.33 −2.41
[−1.53] [−1.31] [−1.65] [−1.62] [−0.73]

ITIpatient,q−1 1.05 1.19 5.20* 5.36* 6.53*
[0.80] [0.65] [1.71] [1.74] [1.82]

ITIpatient,q−2 0.24 1.31 −0.55 −0.63 −0.86
[0.18] [0.76] [−0.20] [−0.23] [−0.25]

ITIimpatient,q−1 −0.88 −2.22 −3.64 −3.01 −4.20
[−0.59] [−1.23] [−0.88] [−0.76] [−0.80]

ITIimpatient,q−2 1.11 3.26* −0.39 −0.67 −3.98
[0.81] [1.93] [−0.13] [−0.24] [−1.30]

ITIinsider,q−1 1.57 2.68* 0.060 0.46 2.33
[1.41] [1.85] [0.02] [0.13] [0.51]

ITIinsider,q−2 2.43*** 2.52** 5.18* 4.87* 3.68
[2.66] [2.12] [2.00] [1.84] [1.01]

ITIshort,q−1 −1.14 −0.81 2.56 4.16 7.20
[−0.41] [−0.22] [0.34] [0.53] [0.68]

ITIshort,q−2 1.28 −2.24 10.5 10.3 11.9
[0.48] [−0.65] [1.68] [1.62] [1.58]

MIAq−1 1.67*** 1.54*** 0.88
[3.13] [2.95] [0.55]

MIAq−2 0.22 0.22 0.42
[0.45] [0.47] [0.34]

PINq−1 −0.13 −0.25 −0.18
[−0.21] [−0.37] [−0.22]

PINq−2 0.13 0.028 −0.13
[0.26] [0.05] [−0.21]

DY PINq−1 −0.60 −0.68 −0.12
[−0.98] [−1.09] [−0.17]

DY PINq−2 0.56 0.48 0.60
[0.92] [0.76] [0.76]

GPINq−1 0.44 0.42 0.37
[0.96] [0.90] [0.57]

GPINq−2 −0.99* −1.00* −1.11
[−1.93] [−1.83] [−1.47]

OWRPINq−1 −0.76 −0.78 −0.52
[−1.47] [−1.33] [−1.22]

OWRPINq−2 0.83* 0.83* 0.74*
[1.74] [1.74] [1.90]

Observations 216,077 119,098 118,113 25,045 25,045 25,045 16,065
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Table 11. Return Predictability of Informed Trading Measures and Short Sale Constraints.
This table reports on the relation between QIDRes and the cross-section of expected returns by level of
short sale constraints. Equation (6) is estimated within terciles of quarter q − 3’s average security lending
fees obtained from FIS database from 2010 through 2018. The sample includes NMS common shares from
January 2010 to December 2018, excluding stocks whose previous month-end’s closing price is below $5 as
well as stocks-dates for firms designated as treatment or control stocks during the SEC’s Tick Size Pilot
experiment. The set of stock characteristics is identical to that used in Table 9. Estimates control for stock
and year-month (year-quarter) fixed effects, and standard errors are double-clustered at both levels. The
numbers in brackets are t-statistics with ***, **, and * identifying statistical significance at the 1%, 5%, and
10% level, respectively.

Independent Tercile of security lending fee
Variable Low Intermediate High

QIDResq−1 0.16** 0.15** 0.23*** 0.21*** 0.39*** 0.38***
[2.24] [2.19] [3.00] [2.87] [3.31] [3.24]

QIDResq−2 0.038 0.036 0.15* 0.14* 0.19 0.18
[0.60] [0.57] [1.86] [1.83] [1.61] [1.55]

Stock characteristics Yes Yes Yes Yes Yes Yes

Liquidity controls Yes No Yes No Yes No

Observations 72,747 72,913 70,888 71,012 67,101 67,227
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A Appendix

A.1 A Simple Framework of Undercutting and Informed Trading

Consider a simple one period rational expectation equilibrium model that builds off of Glosten

and Milgrom (1985). An asset takes the equally likely value of 0 or 1. The fraction π of liquidity

demanders are informed and know the true value of the asset only buying when the the value

equals 1 and only selling when the value equals 0. The remaining 1 − π fraction of liquidity

demanders are uninformed and buy and sell with equal probability. The exact arrival time of the

next trade to arrive is random and follows an exponential distribution with arrival rate parameter λ.

Liquidity providers come in two types: sophisticated and unsophisticated. Unsophisticated liquidity

providers, denoted ULPs, are passive, competitive, and thus set prices equal to the conditional

expected value of the asset. Sophisticated liquidity providers, denoted SLPs, can pay a cost c

which will, with probability ρ inform them about whether the next trade to arrive is informed or

uninformed and on which side of the market the trade will arrive. It does not inform them about

the arrival time of the upcoming trade.37 There are m SLP s where the value m is determined

in equilibrium such that the expected profit associated with being an SLP is equal to the cost c,

and so SLP s are competitive. The likelihood that at least one of the m SLPs receives a signal is

ϕ = 1− (1− ρ)m.

If a SLP receives a signal that an upcoming trade is informed, the SLP will simply sit out and

not post any quotes allowing the ULP s to interact with the incoming informed trade. If no SLP

receives a signal then all SLPs sit out. However, if an SLP receives a signal that the upcoming

trade is uninformed, they will undercut the existing quote on that side of the market. The other

SLPs, whether they receive a signal or not, will observe this quote improvement and will infer that

a signal has been received and will submit their own undercutting orders and an undercutting run

will ensue.38 The outcome tree in Figure A.1 illustrated this setup.

In this setup all informed trades interact with ULP s, and some uninformed trades interact with

ULP s and some with SLP s. The probability that a ULP interacts with an informed trade is the

probability of an informed trade arriving (π) divided by the probability that a trade interacts with

a ULP , which is 1− ϕ(1− π). The probability that a ULP interacts with an uninformed trade is

simply the compliment as shown in equations A.1 and A.2,

37The cost c can be thought of as the cost of investing in the capacity to process, analyze, and respond quickly to
information based in order flow.

38The assumption that all SLPs can infer the signals of others via monitoring quote updates could be relaxed
such that only those SLPs receiving a signal engage in the undercutting run without changing any of the key
inference. In this case ϕ could be redefined to be the probability that at least two SLPs receive a signal ϕ =
1− (1− ρ)m −mρ(1− ρ)m−1, and all inference remains exactly the same since in both cases ϕ is increasing in both
m and ρ. Additionally the profit to undercutting is random, since the arrival of the uninformed trade is random
and so it is unclear exactly when during the run the uninformed trade will arrive. However, given that SLP s know
the arrival rate of trades, they can compute the expected time during an undercutting run a trade will arrive and
so can compute the expected profit of a run that is earned by the winning quote provider, which we denote Π. The
likelihood that a given SLP wins the undercutting run is 1

m
, so expected profits to undercutting are Π

m
. For this

market to be in equilibrium it must be the case that c = Π
m

which implies that the number of SLP s is m = Π
c
.
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Figure A.1. Informed Trading Signal Arrivals and SLPs’ Undercutting Choices.
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P (I) =
π

1− ϕ(1− π)
, (A.1)

P (U) =
(1− ϕ)(1− π)

1− ϕ(1− π)
. (A.2)

The bid and the ask prices are set by the ULP s equal to the expected value of the asset

conditional on the trade occurring as shown in equations A.3 and A.4,

Ask = 1 ∗ P (I) +
1

2
P (U), (A.3)

Bid = 0 ∗ P (I) +
1

2
P (U). (A.4)

Inserting A.1 and A.2 into A.3 and A.4 renders,

Ask∗ =
1 + π − ϕ(1− π)

2(1− ϕ(1− π))
, (A.5)
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Bid∗ =
1− π − ϕ(1− π)

2(1− ϕ(1− π))
. (A.6)

Spread∗ =
π

1− ϕ(1− π)
. (A.7)

With this framework it is straightforward to show that undercutting behavior is inversely related

to informed trading risk. To see this, consider that the probability of an undercutting run is the

probability that at least one SLP receives a signal,ϕ, multiplied by the likelihood that the upcoming

trade is uninformed,(1− π),

P (UndercuttingRun) = ϕ(1− π). (A.8)

The derivative of this value with respect to informed trading risk is δP (UndercuttingRun)
δπ = −ϕ,

which is always less than zero, confirming the inverse relation between undercutting activity and

informed trading risk - i.e. when the risk of informed trading goes up, the likelihood of undercutting

runs diminishes.

The model also produces an additional prediction: that the spread will be increasing in under-

cutting risk - i.e. liquidity gets worse as undercutting risk increases a result documented empiri-

cally(Foley et al. (2021), Foley et al. (2022)). To see this, consider that the spread from A.7 can

be rewritten as,

Spread∗ =
π

1− P (UndercuttingRun)
. (A.9)

P (UndercuttingRun) is bounded by 0 and 1−π it is straightforward to see that as P (UndercuttingRun)

increases, so too does the bid ask spread. The spread is bounded on the top by the value of 1.

Thus, the prevalence of undercutting runs can cause markets to fail if SLP s interact with too many

of the uninformed trades.39

A.2 Is QIDRes a Stock Characteristic?

This section present evidence that QIDRes is not persistent stock/firm characteristic. Panel A in

Figure A.1 presents pairwise correlation coefficients between QIDResq−1, QIDResq−2 and an array

of stock characteristics. QIDRes is nearly orthogonal to all these stocks characteristics. Panel B

present estimates of an AR(2) model that regressesQIDResq onQIDResq−1 andQIDResq−2 using

the panel of stock-quarter observations in our sample. QIDRes exhibits no temporal persistence;

if anything, it exhibit some degree of mean reversion, which consistent with its “residual” nature.

39In the case of no undercutting runs, i.e. ϕ = 0 ⇔ P (UndercuttingRun) = 0, the spread will equal π, its minimum
given the prevalence of informed traders in the market. In the other extreme case where ϕ = 1, implying that all
uninformed trades trigger undercutting runs, P (UndercuttingRun) = 1 − π, and the spread goes to 1 indicating a
failed market.
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Table A.1. Correlations Between Current QIDRes, Past QIDRes, and Stock Characteristics.
Panel A presents pairwise correlations between variables used in asset pricing tests. These variables include
our measures of informed trading from the two preceding quarters, i.e., QIDResj,q−1 and QIDResj,q−2,
three-factor Fama-French betas (βmkt

j,m−1, β
hml
j,m−1, β

smb
j,m−1), estimated using weekly observations from the two-

year period ending in the final full week of month m − 1, book-to-market ratio, (BMj,m−1), natural log
of market capitalization, (ln(Mcapj,m−12)), dividend yield (DYDj,m−1), defined as total dividends over the
past 12 months divided by the share price at the end of month m− 1, idiosyncratic volatility (IdVolj,m−1),
previous month’s return (RETj,m−1), preceding return from the prior 11 months (RETj,(m−12,m−2)), previous
quarter’s fraction institutionally owned shares outstanding (IOShrj,q−1), previous quarter’s Herfindahl-
Hirschman index for institutional ownership (IOShrHHIj,q−1), and month m−2 share turnover (TOj,m−2).
Panel B presents estimates of the AR(2) models the regress QIDResj,q on QIDResj,q−1 and QIDResj,q−2

using different specifications with and without double-clustered standard errors at year-quarter and stock
levels. The sample includes NMS common shares from January 2010 to December 2019, excluding stocks
whose previous month-end’s closing price is below $5 as well as stocks-dates for firms designated as treatment
or control stocks during the SEC’s Tick Size Pilot experiment.

Panel A: Correlations between current/past QIDRes and stock characteristics

Variable Variable index

index 1 2 3 4 5 6 7 8 9 10 11 12 13

1 QIDResq−1

2 QIDResq−2 −0.056

3 βmkt 0.009 −0.003

4 βhml 0.007 0.005 −0.03

5 βsmb 0.030 0.025 0.12 0.15

6 BM 0.059 0.048 −0.09 0.33 0.05

7 ln(Mcap) −0.044 −0.046 0.26 −0.10 −0.40 −0.27

8 DYD 0.016 0.015 −0.13 0.10 −0.16 0.10 0.10

9 Id. Vol. 0.057 0.027 0.14 −0.07 0.32 0.06 −0.31 −0.15

10 RET−1 0.007 0.013 0.00 0.00 0.00 −0.09 −0.02 0.01 0.03

11 RET(−12,−2) −0.117 −0.118 −0.01 −0.09 −0.04 −0.25 −0.07 −0.08 −0.07 −0.03

12 IOShr −0.016 −0.034 0.29 −0.03 0.01 −0.20 0.41 −0.12 −0.08 0.00 −0.03

13 IOShrHHI 0.019 0.028 −0.18 0.02 0.06 0.18 −0.35 0.01 0.14 −0.01 −0.01 −0.60

14 TO 0.06 0.02 0.35 −0.09 0.09 −0.10 0.21 −0.11 0.24 −0.01 0.02 0.31 −0.16

Panel B : AR(2) models of QIDRes

(1) (2) (3) (4)

Constant 0.085*** 0.085** 0.087*** 0.090***
−33.5 −2.41 −37.24 −40.37

QIDResq−1 −0.064*** −0.064*** −0.078*** −0.11***
[−19.16] [−3.01] [−3.70] [−5.15]

QIDResq−2 −0.093*** −0.093** −0.11*** −0.14***
[−27.93] [−2.54] [−4.27] [−5.78]

Quarter FE No No Yes Yes

Stock FE No No No Yes

Clustered Errors N/A Quarter & Stock Quarter & Stock Quarter & Stock

Observations 75,017 75,017 75,017 74,792

A.3 Modified Constructions of QIDRes

This section provides documents the robustness of our main findings to controlling for binding tick

sizes and the effects of intraday volatility on undercutting. We construct two modified versions of

QIDRes. The first modification uses equation (3) to fit parameters from the previous quarter, but
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it defines QIDResInt as follows

QIDResIntqjt = −
QIDq

jt −
(
âq−1
j + b̂q−1

j ln(PQSP )qjt

)
âq−1
j

(A.10)

wher âq−1
j is obtained from equation (3). This modification accounts from the potential cross-

sectional variation in unconditional average undercutting. The second modification accounts for the

possibility that liquidity providing algorithms with very short holding periods avoid undercutting

in more volatile stocks/markets, for a any given level of information asymmetry. Hence, the first

stage in this modification involves modeling QID as a function of both spreads and volatility. That

is, we first fit

QIDq
jt = αq

j + βq
j ln(PQSP )qjt + γqj qvol

q
jt + vqjt, (A.11)

where qvolqjt is the daily standard deviation of 1-minute quote-midpoint returns. Thus, a modified

abnormal undercutting activity—that accounts for high-frequency volatility—for stock j on day t

of quarter q is given by:

QIDResV q
jt = −

QIDq
jt −

(
α̂q−1
j + β̂q−1

j ln(PQSP )qjt + γ̂q−1
j qvolqjt

)
âq−1
j

. (A.12)

Figure A.2 shows that QIDResSD and QIDResV behave qualitatively very similarly to the bask-

ing QIDRes around major information events.
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Figure A.2. Abnormal Undercutting Activity around Scheduled and Unscheduled Corporate
Announcements: Robustness.
The figure presents alternative versions of abnormal undercutting activity, QIDResSD and QIDResV ,
around earnings announcements (EA), unscheduled press releases (PR), and news arrivals not associated
with any identified event (NA). The sample includes all NMS-listed common stocks between Jan, 2010
through Dec, 2019 with previous quarter-end’s share prices of at least $5. Earnings announcement dates
are obtained from COMPUSTAT; unscheduled press release dates and news arrivals not associated with any
identified event are obtained from Ravenpack.
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AI-Powered Trading, Algorithmic Collusion,

and Price Efficiency

Winston Wei Dou Itay Goldstein Yan Ji *

March 10, 2024

Abstract

The integration of algorithmic trading and reinforcement learning, known as AI-powered
trading, has significantly impacted capital markets. This study utilizes a model of imper-
fect competition among informed speculators with asymmetric information to explore the
implications of AI-powered trading strategies on speculators’ market power, information
rents, price informativeness, market liquidity, and mispricing. Our results demonstrate that
informed AI speculators, even though they are “unaware” of collusion, can autonomously
learn to employ collusive trading strategies. These collusive strategies allow them to achieve
supra-competitive trading profits by strategically under-reacting to information, even without
any form of agreement or communication, let alone interactions that might violate traditional
antitrust regulations. Algorithmic collusion emerges from two distinct mechanisms. The
first mechanism is through the adoption of price-trigger strategies (“artificial intelligence”),
while the second stems from homogenized learning biases (“artificial stupidity”). The former
mechanism is evident only in scenarios with limited price efficiency and noise trading risk. In
contrast, the latter persists even under conditions of high price efficiency or large noise trading
risk. As a result, in a market with prevalent AI-powered trading, both price informativeness
and market liquidity can suffer, reflecting the influence of both artificial intelligence and
stupidity.
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1 Introduction

The integration of algorithmic trading with reinforcement learning (RL) algorithms, often termed
AI-powered trading, poses new regulatory challenges and has the potential to fundamentally
reshape capital markets.1 With Nasdaq receiving SEC approval for an RL-based, AI-driven order
type, the momentum for AI integration in trading continues to build. Leading digital trading
platforms like MetaTrader are endorsing RL-based AI trading bots, and major hedge funds such
as Two Sigma, along with investment powerhouses like Blackrock and J.P. Morgan, are adopting
AI technologies. This trend has led policymakers, regulators, and financial market supervisors
worldwide to make AI a regulatory priority. Their focus is now on understanding how AI is
applied in financial markets, its potential implications, and the risks of unintended systemic
impacts.2

In particular, the U.S. Security and Exchange Commission (SEC) has recently cautioned against
the possibility of AI destabilizing the global financial market if big tech-based trading companies
monopolize AI development and applications within the financial sector. The SEC points out
that the real challenge is fostering competitive and efficient markets amidst the swift adoption of
AI technologies, as AI might be optimized to benefit sophisticated speculators at the expense of
other investors, potentially compromising competition and market efficiency. Notably, SEC Chair
Gary Gensler has emphasized this concern, noting that there is evidence of machines in high-
frequency trading starting to exhibit cooperative behavior independently of human intervention
or interaction.

Promoting competition in financial markets is a primary objective of the SEC and similar
regulatory bodies worldwide. As such, the potential for collusion among AI trading algorithms is
a significant concern for these organizations. However, the underlying scientific and economic
principles of such “cooperation” among autonomous AI algorithms remain unclear, not to mention
how it might affect competition, price formation, and overall market efficiency. In this paper, we
demonstrate that “AI collusion” – where autonomous, self-interested algorithms independently
learn to coordinate without any explicit agreement, communication, or intention – can robustly
occur via one of two distinct mechanisms. These mechanisms are collusion through price-trigger
strategies or homogenized learning biases, and their emergence is contingent on the condition
of the trading environment. We find that AI collusion impairs competition and thereby market
efficiency, leading to reduced liquidity, less informative pricing, and increased mispricing.

The economics of AI collusion in trading can be intuitively understood as follows. On one hand,
consider a trading environment where subgame perfect collusive Nash equilibria theoretically
exist for rational-expectations agents, supported by price-trigger strategies as introduced by Green
and Porter (1984). In this environment, even without direct monitoring of trading behaviors,
agents can develop collusive incentives. This is achieved by allowing non-collusive competition to

1Traditional algorithmic trading is based on rigid, human-defined trading protocols that are hardcoded.
2For example, the SEC proposed novel rules concerning the application of AI technologies (SEC, 2023). Additionally,

the European Securities and Markets Authority (ESMA) published a report on AI utilization within EU securities
markets (Bagattini, Benetti and Guagliano, 2023).
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occur when market prices diverge from the expected collusive level beyond a certain threshold.
If the trading environment is not overly disrupted by noise trading flows, AI algorithms have
the capacity to interact and learn, ultimately achieving a steady state, within which they engage
in collusive trading based on a price-trigger strategy, even though they might not achieve the
most profitable collusive equilibrium, due to a learning bias. On the other hand, in a trading
environment where subgame perfect collusive Nash equilibria do not theoretically exist, AI
algorithms cannot learn to sustain collusion through price-trigger strategies. Instead, they may
converge to a steady state characterized by a self-conforming equilibrium, as introduced by
Fudenberg and Levine (1993). This equilibrium concept, weaker than Nash equilibrium, allows
for potentially incorrect or biased off-equilibrium beliefs, tightly aligned with the learning and
trading behaviors of AI algorithms. Beliefs may be accurate along the equilibrium path, as this is
more commonly observed, but can be inaccurate off the equilibrium path, unless there is sufficient
exploration of non-optimal actions (e.g., Fudenberg and Kreps, 1988, 1995; Cho and Sargent, 2008).
Crucially, these incorrect off-equilibrium beliefs are not necessarily inconsistent with observed
outcomes along the equilibrium path.

Notably, AI algorithms are distinct from human traders in that they do not simply mimic
human behavior. Traditional theories and experimental studies about human behavior are
insufficient for understanding AI traders’ behavior and the equilibria they might form. This is
because AI possesses a fundamentally different form of intelligence. Unlike humans, AI decision-
making is not influenced by emotions or logical thinking; rather, it is driven primarily by pattern
recognition and is not affected by higher-order beliefs. Therefore, understanding the dynamics
of capital markets with the prevalence of AI-powered trading algorithms requires insights into
algorithmic behavior akin to the “psychology” of machines (Goldstein, Spatt and Ye, 2021), in
a similar vein to how decision theory and psychology literature have provided insights into
modeling human behavior in an economic context. In this paper, we conduct an experimental
study to examine the behavior of AI algorithms endowed with private information. Following the
tradition of experimental research, our study is qualitative and intended as a proof-of-concept
demonstration.

In this paper, we adopt a streamlined theoretical framework as our laboratory. Building
upon the seminal work of Kyle (1985), we extend this framework in three novel ways. First, our
model incorporates multiple informed speculators within a repeated-trading context. Second, we
introduce a continuum of atomistic long-term preferred-habitat investors, who together create a
collective downward-sloping demand curve. Third, we expand the role of the market maker to
consider both inventory costs and pricing errors, thereby extending beyond the original model’s
focus on pricing errors alone, as in Kyle (1985). Within each trading period, agents execute a single
transaction. The sequence of events for each period unfolds as follows: Initially, the fundamental
value of the asset is determined. Subsequently, a continuum of noise traders collectively places
an order flow, which is independent of the asset’s fundamental value. The variance of such an
aggregate noise trading flow encapsulates the noise trading risk (Long et al., 1990). This noise
trading risk is a crucial characteristic of the trading environment. Each oligopolistic informed
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speculator is aware of the fundamental value but remains uninformed about the noise trading flow
when determining his or her optimal trading strategy. The market maker, in turn, sets the market
price with the goal of minimizing the weighted average of inventory costs and pricing errors. In
doing so, the market maker also takes into account the price elasticity of the preferred-habitat
investors’ demand. This price elasticity represents another critical characteristic of the trading
environment.

In our experimental study, we position our subjects – AI algorithms – within the laboratory
framework we have established. Specifically, we substitute the rational-expectations informed
speculators and market maker as in Kyle (1985)’s model with Q-learning algorithms. These
algorithms are tasked with learning and guiding the real-time trading decisions. Known for
their simplicity, transparency, and economic interpretability, Q-learning algorithms provide a
foundational basis for various RL procedures that have significantly advanced the AI domain.
Our theoretical framework, coupled with simulation-based experiments that blend theoretical
rigor with practical relevance, serves as a laboratory for examining the impact of AI-powered
trading strategies. Specifically, it allows us to investigate their influence on the market power of
informed AI speculators, as well as on the price formation process, including implications for
market liquidity, price informativeness, and mispricing within financial markets.

To ascertain whether informed AI speculators’ behavior exhibits collusion sustained by price-
trigger strategies due to the intelligence of the algorithms, our analysis starts with examining the
theoretical properties of tacit collusion that can be maintained through price-trigger strategies.
This analysis is based on the assumption that both the informed speculators and the market maker
operate under rational expectations and have a thorough understanding of the preferred-habitat
demand curve. We examine how tacit collusion varies across different trading environments.
This includes variations in the price elasticity of preferred-habitat investors and noise trading
risk levels, as well as variations in the number of informed speculators and their time discount
rates. This theoretical investigation enables us to establish a baseline understanding of collusive
behavior in the presence of asymmetric information and the endogenous strategic pricing rules
of the market maker. Importantly, it lays the groundwork for our experimental study on the AI
trading behavior, wherein we assess whether the observed collusion of informed AI speculators
aligns with the theoretical predictions under the assumption of rational expectations and perfect
knowledge of the preferred-habitat demand curve.

As a noteworthy theoretical contribution, we establish a novel result on the impossibility of
collusion under information asymmetry. We demonstrate that informed speculators are unable to
achieve collusive outcomes through price-trigger strategies in certain conditions. This includes
scenarios where market prices are already efficient, accurately reflecting the asset’s fundamental
value, especially when the preferred-habitat investor has high price elasticity of demand, thereby
playing a minimal role in price formation. Another scenario precluding collusion is when the
noise trading risk is excessively high. This novel result illuminates a mechanism distinct from
existing theories on the impossibility of collusion under information asymmetry in the context of
product market competition (Abreu, Milgrom and Pearce, 1991; Sannikov and Skrzypacz, 2007).
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Intuitively, sustaining price-trigger collusion requires two conditions: first, monitoring necessitates
high price informativeness, and second, maintaining informational rents requires a low price
impact of informed trading. These two conditions cannot be simultaneously met when price
efficiency or noise trading risk is high.

Furthermore, as an additional theoretical contribution, we illustrate that in scenarios where the
preferred-habitat investor, exhibiting low price elasticity of demand, significantly influences price
formation, market prices can become inefficient. In such cases, tacit collusion among informed
speculators can be sustained through price-trigger strategies. The success of these strategies is
contingent on the number of informed speculators and the level of noise trading risk in the market.
We find that price-trigger strategies can only sustain collusion in markets with a low level of
noise trading risk and a few informed speculators. Additionally, we show that collusion capacity
increases, market liquidity decreases, price informativeness decreases, and mispricing increases,
when the number of informed speculators drops, the level of noise trading risk decreases, or the
subjective rate of time preference (i.e., “impatience”) declines.

Having established the baseline theoretical results, we now turn back to our simulation experi-
ments, which involve informed AI speculators using Q-learning algorithms. These simulations
provide compelling evidence that these AI speculators can robustly collude and secure supra-
competitive profits by strategically manipulating excessively low order flows relative to their
information about the asset’s fundamental value. This occurs without any form of agreement
or communication that would typically be seen as an antitrust infringement. The cruciality, and
even necessity, of communication in collusion among humans is well-documented in the literature
of experimental economics. To underscore the concept of AI collusion in our simulations, we
deliberately employ relatively simple Q-learning algorithms that base their decisions solely on one-
period-lagged asset prices as state variables. This approach is intentional, omitting more extensive
lagged data, such as information on lagged self-order flows or multiple-period-lagged asset prices.
Although the trading environment is excessively complex relative to the simple AI algorithms
used, our simulation results remarkably indicate that informed AI speculators can intelligently
form collusion across diverse trading environments. Specifically, in environments characterized by
low price efficiency and low noise trading risk, the behavior of algorithmic collusion aligns with
the predictions of our rational-expectations model, where informed AI speculators are capable of
learning price-trigger strategies to sustain collusion. Conversely, in environments with high price
efficiency or high noise trading risk, informed AI speculators are unable to learn price-trigger
strategies, consistent with our rational-expectations model predictions. However, strikingly, going
beyond the rational-expectations model, our simulation results demonstrate that informed AI
speculators can still collude and achieve supra-competitive profits by manipulating excessively low
order flows, even without relying on traditional price-trigger strategies, provided they use equally
naive algorithms. These findings suggest the existence of two distinct mechanisms underpinning
algorithmic collusion, depending on the trading environment.

Finally, we elaborate further on the two distinct mechanisms behind AI collusion across
various trading environments. The first mechanism, known as “algorithmic collusion through
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price-trigger strategies,” involves a form of collusion driven by “artificial intelligence.” In this
scenario, informed AI speculators have the capability to learn and implement price-trigger
strategies effectively. This price-trigger strategy enables the AI speculators to sustain collusion
and reach a steady state closely resembling a subgame perfect Nash equilibrium. Such a scenario
can only occur if both price efficiency and noise trading risk are low. Leveraging simulation
experiments, we provide direct evidence that sizable price deviations trigger aggressive trading
flows similar to those in a non-collusive Nash equilibrium, which diminishes the trading profits
of all informed AI speculators. While the underlying mechanisms through which AI speculators
learn to conduct the price-trigger trading strategy, thereby achieving algorithmic collusion, may
differ from those behind how humans would learn to coordinate using price-trigger trading
strategies, the resulting patterns exhibit notable similarities. At the heart of these mechanisms,
whether involving AI or human speculators, the threat of punishment effectively acts as a deterrent,
discouraging individual speculators from violating the collusive agreement. Closely aligned with
the theoretical predictions of a collusive Nash equilibrium sustained by price-trigger strategies
with rational-expectations agents, as the number or impatience of speculators decreases, the
extent of achievable collusion increases. This leads to reduced market liquidity, diminished price
informativeness, and increased mispricing.

Importantly, algorithmic collusion through price-trigger strategies introduces a paradoxical
situation concerning price informativeness. This paradox arises because such collusion relies on
the informativeness of prices – specifically, the ability of an informed AI speculator to infer the
order flows of other informed AI speculators from observed prices. High price informativeness
typically characterizes environments where prices are sensitive to new information about the
fundamental value of the asset and are not predominantly driven by noise trading flows. However,
in such environments, the heightened price informativeness actually facilitates informed AI
speculators in discerning each other’s order flows, thereby strengthening collusion among them.
This stronger collusion, in turn, endogenously compromises price informativeness by distorting
the information content of prices – specifically, it reduces the responsiveness of prices to new
information about the fundamental value of the asset. Consequently, in a capital market dominated
by AI-powered trading, where algorithmic collusion through price-trigger strategies is prevalent,
achieving perfect price informativeness becomes unattainable.

The second mechanism, known as “algorithmic collusion through homogenized learning
biases,” involves a form of collusion driven by “artificial stupidity.” Despite the learning biases
originating from intrinsic imperfections in the algorithms, informed AI speculators might still
achieve and sustain supra-competitive profits. This can occur when they use similar foundational
models that have homogenized learning biases, effectively forming a kind of hub-and-spoke
conspiracy.3 Johnson and Sokol (2021) emphasize the prevalence of this type of AI collusion in the
context of e-commerce platforms, observing that many retailers adopt similar or even identical AI

3In the context of product market competition, the term “hub-and-spoke conspiracy” is a metaphor used to describe
a cartel that includes a firm at one level of a supply chain, typically a supplier, acting as the “hub” of a wheel. Vertical
agreements down the supply chain represent the “spokes.” This common supplier facilitates the implicit coordination
among its customers.
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pricing algorithms. Specifically, anti-competitive effects may emerge when multiple competitors
use the same AI pricing algorithm supplied by a common service provider, who serves as the hub.
In the financial markets, informed speculators often rely on similar foundational models for their
AI-powered trading systems. This practice, whether intentional or not, can result in a significant
degree of homogenization, a phenomenon documented by Bommasani et al. (2022), among others.
In the context of RL learning, the emergence of a learning bias is directly linked to inconsistencies
in statistical learning. These inconsistencies often stem from over-exploitation and insufficient
exploration, especially when the noise trading risk is excessive. This inherently biased algorithm
leads informed speculators to under-react to their private information in their learned trading
strategies, compared to the optimal strategy in a non-collusive equilibrium setting. Consider
a scenario in which an RL-based AI speculator explores a trading strategy that aggressively
responds to private information and receives a positive signal about the asset’s fundamental value.
If a substantial and positive noise trading flow occurs, this could result in significant losses for the
AI speculator. Consequently, the RL algorithm is unlikely to revisit and update its understanding
of this state-strategy pair sufficiently, consistently deeming this strategy as suboptimal for the
given state. This means the initial adverse effect on the Q function at the state-strategy pair due
to such a shock is unlikely to be mitigated in subsequent iterations. Conversely, if a substantial
and negative noise trading flow occurs, it could lead to significant gains for the AI speculator.
In this fortunate case, the RL algorithm is more likely to revisit and thoroughly understand the
performance of this state-strategy pair, adequately exploiting it, and thus, the initial beneficial
effect on the Q function at this pair may be averaged out, which even leads to accurate estimations
of Q function at this state-strategy pair. Such severe asymmetric learning outcomes from large
positive and negative noise trading flows can lead AI speculators to generally under-react to their
private information in their learned trading strategies.

Such under-reaction can lead to the realization of supra-competitive profits, a scenario that is
more likely to occur with widespread homogenization in the algorithms adopted by AI speculators.
This homogenized learning bias steers informed AI speculators toward a steady state where
trading behaviors can be accurately characterized by a self-conforming equilibrium, as introduced
by Fudenberg and Levine (1993). In contrast to the Nash equilibrium, the self-conforming
equilibrium is weaker because it permits players to hold incorrect (or biased) off-equilibrium
beliefs. This concept of equilibrium is motivated by the idea that noncooperative equilibria should
be interpreted as outcomes of a learning process, where players form beliefs based on their past
experiences. While beliefs can generally be correct along the equilibrium path of play due to its
frequent observation, they are not necessarily correct off the equilibrium path. Correct beliefs off
the equilibrium path require players to engage in sufficient experimentation with non-optimal
actions, as suggested in works by Fudenberg and Kreps (1988), Fudenberg and Kreps (1995), and
Cho and Sargent (2008).

Although adopting superior algorithms can disrupt the collusion created by homogenized
learning biases, it is likely that no AI speculator would choose to gain an advantage by using
superior algorithms due to the nature of AI collusion. Intuitively, if one speculator adopts a
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superior algorithm, it could render the trading strategies of other AI speculators unprofitable,
thereby compelling them to adopt equally or more advanced algorithms. This could spark a race
towards algorithmic advancement, ultimately leading to an equilibrium where trading profitability
is minimal for every AI speculator. Consequently, AI speculators autonomously learn to adopt
similarly basic algorithms in equilibrium. To illustrate this point, we consider a simple extension
of the baseline Q-learning algorithms, wherein informed AI speculators are able to learn both the
key parameter that governs the sophistication of their Q-learning algorithms and their trading
strategies based on the AI-chosen Q-learning algorithm. Our simulation experiments robustly
demonstrate that informed AI speculators may collectively opt for less advanced algorithms. This
occurs despite the potential for increased self-profit that could come from unilaterally choosing a
more advanced algorithm while others’ algorithms remain fixed.

These two types of AI collusion, while both generating supra-competitive trading profits, can
exhibit opposite collusive behaviors as trading environments evolve. On one hand, akin to AI
collusion through price-trigger strategies (referred to as “artificial intelligence”), a decrease in the
number of speculators leads to increased potential for collusion. This, in turn, results in reduced
market liquidity, diminished price informativeness, and increased mispricing. On the other hand,
contrary to AI collusion through price-trigger strategies, an increase in speculator impatience, or
an elevation in noise trading risk, enlarges the potential for collusion due to a more pronounced
homogenized learning bias. (termed “AI collusion through artificial stupidity”). This also leads to
reduced market liquidity, diminished price informativeness, and increased mispricing. Notably,
unlike the scenario with price-trigger strategies, in the case of AI collusion through homogenized
learning biases, an increase in noise trading risk leads to an increase, rather than a decrease, in
trading profitability for AI speculators based on their private information.

Related Literature. The topic of autonomous cooperation among multiple Q-learning agents in
repeated games has garnered significant attention from researchers in the artificial intelligence
and computer science community over the past decades (e.g., Sandholm and Crites, 1996; Tesauro
and Kephart, 2002). Given the widespread adoption of AI technologies in pricing decisions
across various marketplaces, Waltman and Kaymak (2008) demonstrate that Q-learning firms
typically learn to attain supra-competitive profits in repeated Cournot oligopoly games with
homogeneous products, even though a perfect cartel is usually unattainable. Klein (2021) also
examines the strategies employed by algorithms in a context where firms selling homogeneous
products alternate in adjusting prices to support supra-competitive profits. Recently, in a note-
worthy contribution, Calvano et al. (2020) study collusion by AI algorithms in a logit model
of differentiated products, not only uncovering the existence of supra-competitive profits but
also pinpointing how algorithms might learn to sustain collusive outcomes through grim-trigger
strategies. Expanding upon this, our paper extensively broadens the AI experimental framework,
moving from a scenario of perfect information and a static demand curve to one imbued with
asymmetric information and a strategically-determined demand scheme. We characterize the
various types of AI algorithmic collusion, whether occurring through price-trigger strategies or
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through learning biases and homogenization, across diverse market environments.
Inspired by the simulation-based studies on AI algorithmic collusion, empirical research has

also emerged, demonstrating that the use of AI algorithms in setting product prices can lead to
collusion, resulting in heightened supra-competitive prices (e.g., Assad et al., 2023). Additionally,
recent studies have started to focus on policy interventions aiming to obstruct the ability of
algorithms to collude, thereby ensuring the maintenance of competitive prices. Specially, based on
simulation-based studies, Johnson, Rhodes and Wildenbeest (2023) show that platform design can
benefit consumers and the platform. However, achieving these gains may require policies that
condition on past behavior and treat sellers in a non-neutral fashion. Harrington (2018) delves into
critical policy issues surrounding the definition of collusion, such as whether collusion should
necessarily entail an explicit agreement among conspirators, or if it might be more aptly defined
as the maintenance of elevated prices, sustained by a reward-and-punishment scheme.

Our paper is among the first to investigate how the widespread adoption of AI-powered
trading strategies might affect capital markets. The work of Colliard, Foucault and Lovo (2022) is
closely related to our research, as it also explores the implications of interactions among Q-learning
algorithms in capital markets. However, there are notable differences in focus between their work
and ours. Specifically, Colliard, Foucault and Lovo (2022) focuses on AI-powered oligopolistic
market makers, while our study concentrates on AI-powered oligopolistic informed speculators
who face perfectly competitive market makers. Their research illuminates the strategies that AI
market makers would adopt by leveraging their market power. In contrast, our paper explores
the dynamics and implications of algorithmic collusion among AI-powered informed speculators,
particularly in the context of preferred-habitat long-term investors and perfectly competitive
market makers. We provide novel insights into the strategies of informed AI speculators on how
they leverage private information and maximize profits through autonomously forming collusion
via distinct mechanisms.

2 AI-Powered Trading Algorithms

The traditional algorithmic trading system executes orders according to protocols predefined
by human quantitative strategists. In contrast, AI-powered trading employs RL algorithms to
dynamically adjust and optimize trading strategies in real time.

The RL algorithm, a pivotal technique in AI, forms the foundation of numerous successful
AI algorithms, like “AlphaGo,” demonstrating the superiority of RL-backed AI over human
cognitive abilities in areas such as securities trading and other complex tasks. RL algorithms
are model-free machine learning techniques that learn autonomously through trial-and-error
experimentation, without relying on two common assumptions: first, that the multi-agent system
is on an equilibrium path, and second, that agents have knowledge of the true state and payoff
distributions at equilibrium. The fundamental rationale behind RL algorithms centers on the
principle that actions yielding higher rewards historically are more likely to be selected in the
future, compared to those that have led to lesser rewards. By interacting with its environment and
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experimenting with different actions, the agent incrementally learns an optimal policy. Through
continuous rounds of exploration and experimentation, it refines its strategy to prefer actions that
offer the greatest long-term benefits, even without any knowledge of the environment beforehand.
This iterative process enables the agent to progressively enhance its decision-making approach,
consistently steering towards actions that maximize the cumulative rewards based on its gathered
experiences.

While RL encompasses different variants (e.g., Watkins and Dayan, 1992; Sutton and Barto,
2018), we choose to focus on Q-learning for several reasons. First, Q-learning serves as a
foundational framework for numerous RL algorithms, upon which many recent AI breakthroughs
are built. However, it is important to note that AI trading algorithms currently in use may not
exclusively rely on Q-learning principles. Second, Q-learning holds substantial popularity among
computer scientists in practical applications. Third, Q-learning algorithms possess simplicity and
transparency, offering clear economic interpretations, in contrast to the black-box nature of many
machine learning and AI algorithms. Finally, Q-learning shares a common architecture with more
sophisticated RL algorithms.

In the remainder of this section, we will concentrate on a multi-agent system, detailing the
Bellman equation for each agent, and describe the Q-learning algorithm that an agent employs.
This discussion will cover how each agent iteratively updates its Q-function and strategy based
on the received rewards, thereby optimizing its long-term outcomes through the Q-learning
algorithm.

2.1 Bellman Equation and Q-Function

In a multi-agent Markov decision process environment, there are I agents, indexed by i = 1, · · · , I.
The state of the environment is represented by a Markov process, denoted by s. Each agent makes
decisions based on the current state, which in turn evolves partly due to the collective actions of
all agents within the system. Agent i’s intertemporal optimization is characterized by the Bellman
equation and solved recursively via dynamic programming:

Vi(s) = max
xi∈X

{
E [πi|s, xi] + ρE

[
Vi(s′)|s, xi

]}
, (2.1)

where xi ∈ X is action of agent i, with X denoting the set of available actions, πi is the payoff
received by agent i, which may be influenced by the actions of other agents, and s, s′ ∈ S represent
the states in the current and the next period, respectively, with S denoting the set of states. In
general, s and s′ can depend on agent i’s individual characteristics and private information.
However, for our purpose of illustration, it is sufficient to concentrate on the simple setting
where the same state applies uniformly to all agents in the system. The first term on the right-
hand side, E [πi|s, xi], is agent i’s expected payoff in the current period, and the second term,
ρE [Vi(s′)|s, xi], is agent i’s continuation value, with the parameter ρ capturing the subjective rate
of time preference.
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The Bellman equation (2.1) represents the recursive formulation of dynamic control problems
(e.g., Bellman, 1954; Ljungqvist and Sargent, 2012). It focuses on the equilibrium path, and thus
the optimal value function Vi(s) depends solely on the state variable s. In contrast to focusing
solely on the equilibrium path, the Q function, denoted by Qi(s, xi), extends the optimal value
function to include the values of each state-action pair. This captures scenarios (or counterfactuals)
that occur off the equilibrium path. By definition, the value of Qi(s, xi) is the same as that in the
curly brackets of the Bellman equation (2.1):

Qi(s, xi) = E [πi|s, xi] + ρE
[
Vi(s′)|s, xi

]
. (2.2)

Intuitively, the Q-function value, Qi(s, xi), can be interpreted as the quality of action xi in state s.
The optimal value of a state, Vi(s), is the maximum of all the possible Q-function values of state s.
That is, Vi(s) ≡ maxx′∈X Qi(s, x′). By substituting Vi(s′) with maxx′∈X Qi(s′, x′) in equation (2.2),
we can establish a recursive formula for the Q-function as follows:

Qi(s, xi) = E [πi|s, xi] + ρE

[
max
x′∈X

Qi(s′, x′)
∣∣∣∣s, xi

]
. (2.3)

When both |S| and |X| are finite, the Q-function can be represented as an |S| × |X| matrix,
which is often referred to as the Q-matrix.

2.2 Q-Learning Algorithm

If agent i possessed knowledge of its Q-matrix, determining the optimal actions for any given
state s would be straightforward. In essence, the Q-learning algorithm is a method to estimate
the Q-matrix in environments where the underlying distribution E [·|s, xi] is unknown and there
are limited observations for off-equilibrium pairs (s, xi) in the data. The Q-learning algorithm
addresses both challenges concurrently: it employs Monte Carlo methods to estimate the underly-
ing distribution E[·|s, xi] based on the law of large numbers, while at the same time, conducts
trial-and-error experiments to produce off-equilibrium counterfactuals.

The iterative experimentation starts from an arbitrary initial Q-matrix of agent i, denoted by
Q̂i,0, and updates the estimated Q-matrix Q̂i,t recursively. The learning equation governing this
update is as follows:

Q̂i,t+1(st, xi,t) = (1 − α) Q̂i,t(st, xi,t)︸ ︷︷ ︸
Past knowledge

+ α

[
πi,t + ρ max

x′∈X
Q̂i,t(st+1, x′)

]
,︸ ︷︷ ︸

Present learning based on a new experiment

(2.4)

where α ∈ [0, 1] captures the forgetting rate, st is the state that the iteration t concentrates on,
st+1 is randomly drawn from the Markovian transition probabilities conditional on st, Q̂i,t(s, x) is
the estimated Q-matrix of agent i in the t-th iteration, and πi,t is the payoff in the t-th iteration,
corresponding to agent i’s choice of action xi,t.

Equation (2.4) indicates that for agent i in the t-th iteration, only the value of the estimated
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Q-matrix Q̂i,t(s, x) corresponding to the state-action pair (st, xi,t) is updated to Q̂i,t+1(st, xi,t). All
other state-action pairs remain unchanged. In other words, Q̂i,t+1(s, x) = Q̂i,t(s, x) for cases
where s ̸= st or x ̸= xi,t. The updated value Q̂i,t+1(st, xi,t) is computed as a weighted average of
accumulated knowledge based on the previous experiments, Q̂i,t(st, xi,t), and learning based on a
new experiment, πi,t + ρ maxx′∈X Q̂i,t(st+1, x′). A key distinction between the Q-learning recursive
algorithm (2.4) and the Bellman recursive equation (2.1) lies in how they handle expectations.
Q-learning algorithm (2.4) does not form expectations about the continuation value because the
Markovian transition probabilities from st to st+1 are unknown. Instead, it directly discounts the
continuation value associated with the randomly realized state st+1 in the (t + 1)-th iteration.

It is crucial to note that the forgetting rate α plays a significant role in the Q-learning algorithm,
balancing past knowledge against present learning based on a new experiment. A higher α not
only indicates a greater impact of present learning on the Q-value update but also implies that
the algorithm forgets past knowledge more quickly, potentially leading to biased learning. To
elaborate, let τ be the number of times that the Q-value of the state-action pair (s, x) has been
updated in the past. We derive in Appendix G.1 that as τ → ∞, the Q-value of (s, x) is as follows:

Q̂i,t(τ)(s, x) ≈
τ−1

∑
h=0

α(1 − α)h
[

πi,t(τ−h) + ρ max
x′∈X

Q̂i,t(τ−h)(st(τ−h)+1, x′)
]

, (2.5)

where t(h) represents the period in which the Q-value of (s, x) receives the h-th update. Clearly,
when α is not close to 0, the weights given by α(1 − α)h decay so rapidly with τ that it jeopardizes
the applicability of the law of large number. When the underlying environment has randomness,
a sufficiently small value of α is crucial for ensuring small learning biases. Otherwise, the law
of large numbers may fail, leading to biased estimation for the underlying distribution E[·|s, xi].
However, a smaller value of α requires more iterations for the algorithm to converge, and thus
greater computational costs. Moreover, if α is excessively small relative to the decaying speed of
the exploration rate εt in equation (2.6), biased learning may arise due to insufficient exploration.

2.3 Experimentation

Conditional on the state variable st, agent i chooses its action xi,t in two experimentation modes,
exploitation and exploration, as follows:

xi,t =

{
argmaxx∈X Q̂i,t(st, x), with prob. 1 − εt, (exploitation)
x̃ ∼ uniform distribution on X, with prob. εt. (exploration)

(2.6)

To determine the mode, we employ the simple ε-greedy method. As outlined in equation (2.6),
during the t-th iteration, agent i engages in the exploration and exploitation modes with exogenous
probabilities εt and 1 − εt, respectively. In the exploitation mode, agent i chooses its action to
maximize the current state’s Q-value, given by xi,t = argmaxx∈X Q̂i,t(st, x). Conversely, in the
exploration mode, agent i randomly chooses its action x̃ from the set of all possible values in X,
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each with equal probability.4 Essentially, the exploration mode guides the Q-learning algorithm
to experiment with suboptimal actions based on the current Q-matrix approximation, Q̂i,t. As t
approaches infinity, the pre-specified exploration probability εt monotonically decreases to zero.

Given that agent i lacks prior knowledge about its Q-matrix, it is evident that sufficient explo-
ration is crucial to increase the accuracy of approximating the true Q-matrix. At a minimum, all
actions must be attempted multiple times in all states, and even more so in complex environments.
However, in addition to the computational costs associated with exploration, there exists a tradeoff.
An overly comprehensive exploration scheme may have adverse effects when multiple agents
interact with one another, because the random selected actions by one agent introduce noises to
other agents, impeding their learning processes.

3 Model

This model extends the influential framework of Kyle (1985) along three novel dimensions. First,
it considers multiple informed speculators in a repeated-game context. Second, it introduces a
representative preferred-habitat investor, whose net demand flows need to be absorbed by other
agents in the market (e.g., Vayanos and Vila, 2021). Third, it introduces a market maker who takes
into account both inventory and pricing error, going beyond the limited focus on price error alone
as in the model of Kyle (1985).

By blending theoretical rigor with practical relevance, this model offers a laboratory for
exploring the implications of AI-powered trading on both algorithmic collusion and price efficiency.
Importantly, the theoretical results produced by the model act as a foundational benchmark for the
characterization and categorization of AI-powered trading in simulation experiments in Sections 4
to 6.

3.1 Economic Environment

Time is discrete, indexed by t = 1, 2, ..., and runs forever. There are I ≥ 2 risk-neutral informed
speculators, a representative noise trader, a representative preferred-habitat investor, and a market
maker. The economic environment is stationary, and all exogenous shocks are independent and
identically distributed across periods.

In each period t, an asset is available for trading, with its fundamental value, denoted as vt,
being realized at the end of the period. Each period consists of two distinct steps: the beginning
and the end. We examine the problem in period t in reverse order. At the end of the period, vt is
observed by all agents. It is drawn from a normal distribution N(v, σ2

v ), where σ2
v represents the

variance and v the mean, with v ≡ 1 for convenience. After the realization of vt, trading profits
for all agents in period t are determined.

4For simplicity, we adopt a uniform distribution. However, a more intelligent distribution choice could make
exploration more efficient and less costly.
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At the beginning of the period, the informed speculators, noise trader, and preferred-habitat
investor submit their order flows. Simultaneously, the market maker sets the asset’s price,
denoted as pt. Specifically, the noise trader submits its order flow ut to either buy ut units of the
asset if ut > 0 or take a short position of ut if ut < 0, with ut following a normal distribution
N(0, σ2

u), where zero is the mean and σ2
u is the variance. The informed speculators are indexed

by i ∈ {1, · · · , I}. Each informed speculator i perfectly knows the value vt, but is unaware of ut

when submitting his order flows; he understands that the choice of order flow xi,t will influence
pt by shifting the market-clearing condition and revealing information. The informed speculator i
chooses its order flows {xi,t}t≥0 to maximize the expected present value of the profit stream:

E

[
∞

∑
t=0

ρt(vt − pt)xi,t

]
, (3.1)

where ρ ∈ (0, 1) is the subjective discount rate.

Preferred-Habitat Investor’s Demand Curve. Contrary to the uninformed speculator in Kyle
(1989), the preferred-habitat investor does not derive information about vt from pt. Instead, this
investor has a linear downward-sloping demand curve for the net trading flow zt:

zt = −ξ(pt − v), with ξ > 0. (3.2)

The rationale behind this specification is straightforward: the preferred-habitat investor focuses
solely on the ex-ante expected fundamental value, v, and tends to buy more of the asset when
pt − v is more negative, interpreting this as a stronger indication that the asset is currently
undervalued. The demand curve is proportional to the spread between the ex-ante expected
fundamental value and the market price. Graham (1973) names this spread a safety margin.

The average asset holding of the preferred-habitat investor, denoted as z, is often substantial.
This implies a small price elasticity of demand, given by ε = E[(dzt/dpt)(pt/zt)] = −ξE[pt/zt] ≈
−ξ/z. Studies indicate that preferred-habitat investors with low price elasticity of demand play
an important role in shaping asset prices (e.g., Greenwood and Vayanos, 2014; Vayanos and Vila,
2021; Greenwood et al., 2023).

The preferred-habitat investor’s demand curve (3.2) mirrors that of the “long-term investor”
in the model by Kyle and Xiong (2001). This becomes clear, especially when we recognize that v is
the fair value of the asset to risk neutral investors as v = E[vt]. According to this demand curve,
the preferred-habitat investor always provides liquidity to the market. When the price falls further
below the ex-ante expected fundamental value, v, in the market, the preferred-habitat investor
will buy more of the asset. Analogous to Kyle and Xiong (2001), the demand curve (3.2) can be
justified by a rational choice made by the preferred-habitat investor under certain assumptions.
These assumptions are summarized in Lemma 1. The proof is in Appendix A.

Lemma 1 (Demand Curve). If the preferred-habitat investor possesses exponential utility with an absolute
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risk aversion coefficient of η, then the demand curve has the functional form of (3.2), where the slope ξ is
given by 1/(ησ2

v ).

Moreover, the concept of specifying exogenous net demand curves within the framework of a
noisy rational expectation equilibrium also shares similarities with studies conducted by Hellwig,
Mukherji and Tsyvinski (2006) and Goldstein, Ozdenoren and Yuan (2013), among others. The
fundamental idea is to capture relevant institutional frictions and preferences in a parsimonious
and tractable manner. Notably, our net demand curves can be reinterpreted as “noisy supply
curves” in these prior works by introducing a new variable z̃t ≡ −(ut + zt). Specifically, z̃t

represents the total trading supply provided by the noisy trader and the preferred-habitat investor
to absorb the trading demand of informed speculators. The total supply z̃t follows an exogenous
noisy supply curve defined as:

z̃t = −ut + ξ(pt − v), (3.3)

where −ut can be reinterpreted as the unobservable demand or supply shock in the context of the
above prior works.

Market Maker’s Pricing Rules. Trading occurs through the market maker, whose role is to absorb
the order flow while minimizing pricing errors. The market maker observes the combined order
flow of informed speculators and the noise trader, represented by yt = ∑I

i=1 xi,t + ut, as well as
the order flow zt of the preferred-habitat investor. However, the market maker cannot distinguish
between order flows from informed speculators and the noise trader. Thus, the market maker
can only make statistical inferences about the fundamental value vt based on the combined order
flow yt rather than individual order flows. The market maker sets the price pt to jointly minimize
inventory and pricing errors according to the following objective function:

min
pt

E

[
(yt + zt)

2 + θ(pt − vt)
2
∣∣∣∣yt

]
, (3.4)

where θ > 0 represents the weight that the market maker places on minimizing pricing errors.
Here, E [·|yt] denotes the market maker’s expectation over vt, conditioned on the observed
combined order flow yt and its belief about how informed speculators would behave in the
equilibrium.

The market maker’s objective function (3.4) captures both the inventory cost and asymmetric
information faced by the market maker. Because the market maker takes the position −(yt + zt)

to clear the market, the term (yt + zt)2 represents its inventory-holding costs. The quadratic
form is adopted for tractability, consistent with the literature (e.g., Mildenstein and Schleef, 1983).
The term θ(pt − vt)2 captures the market maker’s efforts to reduce pricing errors arising from
asymmetric information. The weight θ serves as a reduced-form way to capture the various
benefits of reducing pricing errors, such as increased trading flows from a growing client base or
enhanced competitive advantages over other trading platforms.5 As θ approaches zero, the price

5Similarly, in the context of e-commerce platforms, it is often assumed that the platform aims to maximize a weighted
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pt is primarily determined by the market clearing condition, yt + zt = 0, as in the model of Kyle
and Xiong (2001). Conversely, as θ increases towards infinity, the price pt is primarily determined
by the pricing-error minimization condition, pt = E [vt|yt], as in the model of Kyle (1985).

Because multiple informed speculators engage in a repeated-game of trading in our model,
multiple equilibria may emerge. We identify three types of equilibria: the non-collusive equi-
librium, the perfect cartel equilibrium, and the collusive equilibrium sustained by price-trigger
strategies. Throughout our analysis, we assume that the market maker is aware of the specific equi-
librium in which informed speculators are participating. Specifically, we consider the linear and
symmetric equilibrium in which the trading strategy of the informed speculators is characterized
by

xi,t = χ(vt − v), for all i = 1, · · · , I. (3.5)

The first-order condition of the minimization problem (3.4) leads to

pt =
ξ

ξ2 + θ
yt +

ξ2

ξ2 + θ
v +

θ

ξ2 + θ
E [vt|yt] ,

where E [vt|yt], according to Bayesian updating, is

E [vt|yt] = v + γyt, with γ =
Iχ

(Iχ)2 + σ2
u/σ2

v
.

Therefore, the market maker’s pricing rule is

pt = v + λyt, with λ =
θγ + ξ

θ + ξ2 .

3.2 Noncollusive Nash Equilibrium

We use the superscript N to denote the variables in the noncollusive Nash equilibrium. At the
beginning of each period t, each informed speculator i solves the following problem:

xN(vt) = argmax
xi

E

[
(vt − pt) xi

∣∣∣∣vt

]
, (3.6)

where E [·|vt] is informed investor i’s expectation conditional on the privately observed vt and
its belief about how the market maker would set the price in the equilibrium pt = pN(yt). The
pricing function pN(·) is determined in equilibrium, as follows:

pN(yt) = v + λNyt, with λN =
θγN + ξ

θ + ξ2 and γN =
IχN

(IχN)2 + (σu/σv)2 , (3.7)

average of per-unit fee revenues and consumer surplus (see, e.g., Johnson, Rhodes and Wildenbeest, 2023). The weight
on consumer surplus in this context is a reduced-form way to capture various aspects of increasing consumer surplus.
For example, increasing consumer surplus allows the platform to dynamically expand its consumer base over time and
better compete with rival platforms.
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where yt is the combined order flow of informed speculators and the noise trader, given by

yt = xi + (I − 1)xN(vt) + ut. (3.8)

The non-collusive Nash equilibrium can be summarized in the following proposition.

Proposition 3.1. The order flow of informed speculators and price in the non-collusive Nash equilibrium
are

xN(vt) = χN(vt − v) and pN(vt) = v + λNyt, respectively,

where χN and λN satisfy

χN =
1

(I + 1)λN and λN =
θγN + ξ

θ + ξ2 with γN =
IχN

(IχN)2 + (σu/σv)2 .

The expected profit of informed speculators is

πN =
(

1 − λN IχN
)

χNσ2
v .

The price informativeness, denoted by IN , is defined as the logged signal-noise ratio of prices,

IN = log

[
var(xN

i,t)

var(ut)

]
= log

[(
IχN

)2
(σv/σu)

2
]

.

The market liquidity, denoted by LN , is defined as the inverse sensitivity of the market maker’s inventory
|zt + yt| to the noise order flow ut

LN =
1

∂|zt + yt|/∂ut
=

1
|1 − ξλN | .

The mispricing, denoted by EN , is defined by the percentage deviation of the asset’s price pt from its
conditional expected value

EN =

∣∣∣∣ pN(vt)− EN [vt|yt]

EN [vt|yt]− v

∣∣∣∣ = ∣∣∣∣λN − γN

γN

∣∣∣∣ .

Intuitively, the price informativeness measure captures the fact that relative to the noise trader,
informed speculators’ order flows contain information about the asset’s value vt. Thus, the order
flow of informed speculators can be considered as informative signals about the value of vt

whereas noise order flows contain no information. The market liquidity measure captures the fact
that when the market is less liquid, trade flows can have a larger impact on the market maker’s
inventory, leading to greater adjustments in the asset’s price.
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3.3 Perfect Cartel Equilibrium

Consider a cartel that consists all I informed speculators under perfect collusion. The cartel is a
monopolist who chooses each informed speculator’s order flow to maximize total profits. Because
informed speculators are symmetric, the cartel solves the following problem

xM(vt) = argmax
xi

E

[
(vt − pt) xi

∣∣∣∣vt

]
, (3.9)

where E [·|vt] is informed investor i’s expectation conditional on the privately observed vt and
its belief about how the market maker would set the price in the equilibrium pt = pM(yt). The
pricing function pM(·) s determined in equilibrium, as follows:

pM(yt) = v + λMyt, with λM =
θγM + ξ

θ + ξ2 and γM =
IχM

(IχM)2 + (σu/σv)2 , (3.10)

where yt is the combined order flow of informed speculators and the noise trader, given by

yt = Ixi + ut. (3.11)

The perfect cartel equilibrium can be summarized in the following proposition.

Proposition 3.2. The order flow of informed speculators and price in the perfect cartel equilibrium are

xM(vt) = χM(vt − v) and pM(vt) = v + λMyt, respectively,

where χM and λM satisfy

χM =
1

2IλM and λM =
θγM + ξ

θ + ξ2 with γM =
IχM

(IχM)2 + (σu/σv)2 .

The expected profit of informed speculators is

πM =
(

1 − λM IχM
)

χMσ2
v .

The price informativeness, denoted by IM, is defined as the logged signal-noise ratio of prices,

IM = log

[
var(xM

i,t )

var(ut)

]
= log

[(
IχM

)2
(σv/σu)

2
]

.

The market liquidity, denoted by LM, is defined as the inverse sensitivity of the market maker’s inventory
|zt + yt| to the noise order flow ut

LM =
1

∂|zt + yt|/∂ut
=

1
|1 − ξλM| .
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The mispricing, denoted by EM, is defined by the percentage deviation of the asset’s price pt from its
conditional expected value

EM =

∣∣∣∣ pM(vt)− EM[vt|yt]

EM[vt|yt]− v

∣∣∣∣ = ∣∣∣∣λM − γM

γM

∣∣∣∣ .

3.4 Collusive Nash Equilibrium

Information asymmetry is a significant characteristic of capital markets, rendering standard
grim-trigger strategies less viable to sustain tacit collusion, due to the challenges in accurately
observing and monitoring each other’s actions.6 However, tacit collusion can still be sustained
under information asymmetry through price-trigger strategies with imperfect monitoring. If an
informed speculator can reliably infer other informed speculators’ total order flows from the
market price, collusive incentives can be created.

The concept of tacit collusion sustained by price-trigger strategies was first introduced by
Green and Porter (1984). Even with imperfect monitoring, agents can establish collusive incentives
by allowing noncollusive competition to occur with positive probabilities. Abreu, Pearce and
Stacchetti (1986) further characterize optimal symmetric equilibria in this context, revealing two
extreme regimes: a collusive regime and a punishment regime featuring a noncollusive reversion.
In the collusive regime, informed speculators implicitly coordinate on submitting order flows in a
less aggressive manner than what they would do in the noncollusive Nash equilibrium. If the
price breaches a critical level, suspicion of cheating arises, leading to a noncollusion reversion. In
the punishment regime, informed speculators trade noncollusively and obtain low profits.

Price-Trigger Strategies. We now describe the collusive Nash equilibrium sustained by price-
trigger strategies under information asymmetry, as studied by Green and Porter (1984). Specifically,
we focus on the symmetric collusive Nash equilibrium in which all I informed speculators choose
the same collusive order flow, denoted by xC(vt). Such trading strategies are sustained by a
price-trigger strategy: Firms will initially submit their respective order flows xC(vt), and will
continue to do so until the market price falls below a trigger price q(vt) if vt < v or goes above a
trigger price q(vt) if vt > v, and then they will trade noncollusively for a reversionary episode
that lasts for T − 1 periods. In period t, the state of world is “normal,” denoted by st = 0, if (a)
vt−1 = v and st−1 = 0, or (b) pt−1 ≤ q(vt−1) and vt−1 > v and st−1 = 0, or (c) pt−1 ≥ q(vt−1) and
vt−1 < v and st−1 = 0, or (d) pt−T > q(vt−T) and vt−T > v and st−T = 0, or (e) pt−T ≤ q(vt−T)

and vt−T < v and st−T = 0. Otherwise, in period t, the state of world is “reversionary,” denoted
by st = 1. In other words, st = 0 if price trigger is not violated at t − 1 and st−1 = 0, or if price
trigger is violated at t − T and st−T = 0; otherwise, st = 1.

6Tacit collusion sustained by grim-trigger strategies has been extensively studied since the pioneering work of
Fudenberg and Maskin (1986) and Rotemberg and Saloner (1986), among others. Recent studies delve into the impact
of such tacit collusion sustained by grim-trigger strategies on pricing in capital markets (e.g., Opp, Parlour and Walden,
2014; Dou, Ji and Wu, 2021a,b; Dou, Wang and Wang, 2023).
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Similar to Green and Porter (1984), we assume that the state variable st is a common knowledge
to all agents. We characterize the equilibrium order flows and prices in each period t. There are
two cases: when st = 1, the state of world is reversionary, and thus the equilibrium order flows
and prices follow the noncollusive equilibrium in Section 3.2; and when st = 0, the state of world
is normal. In this case, we focus on linear policy functions and characterize the equilibrium order
flow xC(vt) and price pC

t as follows:

xC(v) ≡ χC(v − v), (3.12)

pC(y) = v + λCy, with λC =
θγC + ξ

θ + ξ2 and γC =
IχC

(IχC)2 + σ2
u/σ2

v
. (3.13)

The price-trigger function q(v) is specified based on the expected price when all informed
speculators trade coordinately according to xC(v) conditional on v, namely, pC(v) ≡ E

[
pC(y)|v

]
.

Specifically, plugging (3.12) into (3.13) and taking expectation over u, we obtain that pC(v) ≡
v + λC IχC(v − v). The price-trigger function q(v) is specified as follows:

q(v) ≡
{

pC(v) + λCσuω, if v > v
pC(v)− λCσuω, if v < v,

(3.14)

where ω > 0 is a parameter that characterizes the tightness of the price trigger.
Equation (3.14) warrants further discussions. First, when v > v, informed investors have

incentives to buy a large amount of the asset, which boosts up its price. As a result, when
v > v, a meaningful price-trigger strategy would punish the potential deviating counterparty
by reverting to the noncollusive Nash equilibrium once the market price goes above a certain
high-level threshold q(v). In contrast, when v < v, informed investors have incentives to sell a
large amount of the asset, which suppresses down its price. As a result, when v < v, a meaningful
price-trigger strategy would punish the potential deviating counterparty by reverting to the
noncollusive Nash equilibrium once the market price falls below a certain low-level threshold
q(v). Second, there is no price threshold when v = v because no informed investor would have
incentives to trade in this case. Third, although there are infinitely many alternative ways to
specify the functional form of the threshold q(v), we focus on a specification that is not only
statistically meaningful but also ensures a linear model solution as in Kyle (1985). If no one
deviates from the coordinated trading, each informed speculator can infer that the noise order is
ût = [pt − q(vt)]/λC based on the observed price pt = pC(yt). If ût is excessively positive when
vt > v, say ût > ωσu for some constant ω > 0, the informed speculator would suspect that some
other informed speculators might have deviated from the implicit agreement. Analogously, if
ût is excessively negative when vt < v, say ût < −ωσu for some constant ω > 0, the informed
speculator would suspect that some other informed speculators might have deviated from the
implicit agreement. Fourth, the multiplier σu ensures that the probability of price-trigger violation
is independent of the magnitude of noisy trading, σu, in the collusive Nash equilibrium.

Given that st = 0, let JC(χi) denote each informed speculator i’s expected present value of
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future profits, when investor i chooses xi,t = χi(vt − v) and all other I − 1 informed investors
choose xC(vt). The value of JC(χi) is determined recursively as follows:

JC(χi) =E
[(

vt − pC(yt)
)

χi(vt − v)
]

(3.15)

+ ρJC(χi)P

{
Price trigger is not violated in period t

∣∣∣∣χi, χC
}

+ E

[
T−1

∑
τ=1

ρτπN(vt+τ) + ρT JC(χi)

]
P

{
Price trigger is violated in period t

∣∣∣∣χi, χC
}

,

where the combined order flow of informed investors and the noise trader is

yt = χi(vt − v) + (I − 1)xC(vt) + ut, (3.16)

and the probability of price-trigger violation is

P

{
Price trigger is not violated in period t

∣∣∣∣χi, χC
}

=E [P (pt ≤ q(vt)|vt) 1{vt > v}] + E [P (pt ≥ q(vt)|vt) 1{vt < v}]

=E
[
Φ(σ−1

u (χC − χi)(vt − v) + ω)1{vt > v}
]
+ E

[
Φ(σ−1

u (χi − χC)(vt − v) + ω)1{vt < v}
]

,

where Φ(·) is the CDF of the standard normal distribution.

Impossibility of Collusion When Efficient Prices Prevail. The following proposition highlights
the impossibility of achieving collusion in an environment closely resembling the standard Kyle
benchmark (Kyle, 1985), where efficient prices prevail. In this setting, the market maker focuses
on minimizing pricing errors and sets the price approximately at E[vt|yt], which is the expected
fundamental value conditional on the observed combined order flow of informed speculators and
the noise trader. In other words, the efficient price in this context is an unbiased estimate of the
asset’s fundamental value. The proof is in Appendix B.

Proposition 3.3 (Impossibility of Collusion When Efficient Prices Prevail). If θ is large or ξ is small,
there is no collusive Nash equilibrium that can be sustained by price-trigger strategies for any σu/σv > 0.

Sustaining coordination through price-trigger strategies requires two conditions: (i) price infor-
mativeness needs to be sufficiently high to ensure that there is sufficient capacity for monitoring,
which has been emphasized by Abreu, Milgrom and Pearce (1991) and Sannikov and Skrzypacz
(2007), and (ii) the price impact of informed speculators’ order flows needs to be sufficiently low
to ensure that there is sufficient room for achieving significant informational rents.

However, the environments with large θ or small ξ closely resemble the standard Kyle
benchmark (Kyle, 1985), where efficient prices prevail. In this environment, because λC is
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approximately equal to γC, price informativeness is always low and unresponsive to σu/σv.7 As
a result, the two necessary conditions (i) and (ii) cannot hold simultaneously. In particular, in
order to achieve high price informativeness, the environment needs to have low noise trading
risks, as captured by a low σu/σv. However, knowing that noise orders are not significant, the
market maker will choose a high γC, resulting in a high price impact of informed trading because
λC ≈ γC. The high price impact of informed trading would further induce informed speculators
to trade conservatively by placing orders of small amounts. In the end, the positive effect on price
informativeness from low noise trading risks would be largely cancelled out by the negative effect
from the conservative orders of informed speculators, making the price informativeness low and
unresponsive to σu/σv.

Proposition 3.3 carries intrinsic value in terms of theoretical insights and novelty, setting
it apart from existing theories on the impossibility of collusion under information asymmetry,
as posited by Abreu, Milgrom and Pearce (1991) and Sannikov and Skrzypacz (2007). These
prior theories emphasize that, when prices are not informative, “false positive” errors, made
by triggering punishments, occur on the equilibrium path disproportionately often, erasing all
benefits from collusion. In contrast, Proposition 3.3 offers a distinctive intuitive perspective,
highlighting that informed speculators cannot exploit pricing errors to achieve collusive outcomes
because prices are already efficient, accurately reflecting the asset’s fundamental value. The
absence of substantial pricing errors essentially renders collusion infeasible, as there exists limited
scope for market manipulation based on price discrepancies. In summary, Proposition 3.3 sheds
light on the interplay between efficient pricing, information asymmetry, and collusive behavior in
financial markets. By demonstrating the impracticality of collusion in environments characterized
by efficient prices, our results provide a deeper understanding of market dynamics and the
implications of information asymmetry on collusion strategies.

Existence of Collusion with a Significant Preferred-Habitat Investor. The following proposition
shows that collusion sustained by price-trigger strategies exists when the preferred-habitat investor
plays an important role in price formation, making prices not very efficient. However, when
information asymmetry, captured by σu/σv, is too large, or when the number of informed
speculators I, no collusion can be sustained by price-trigger strategies even with inefficient prices.
The proof is in Appendix C.

Proposition 3.4 (Existence of Collusion with a Significant Preferred-Habitat Investor). If θ is
sufficiently small or ξ is sufficiently large, there exists a collusive Nash equilibrium that can be sustained by
price-trigger strategies provided that σu/σv and I are not too large.

If θ is small or ξ is large, the market maker determines prices determined primarily to minimize
inventory costs rather than pricing errors. Thus, a low price impact of informed trading can
arise even in environments with low noise trading risks. The low price impact of informed
trading would further induce informed speculators to trade aggressively by placing orders of large

7In the extreme case with θ = ∞ or ξ = 0, price informativeness is independent from σu/σv as in Kyle (1985).
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amounts, thereby leading to high price informativeness. Consequently, the necessary conditions
(i) and (ii) can hold simultaneously when the preferred-habitat investor plays an important role in
price formation.

However, when σu/σv is too large, price informativeness is low, and thus price-trigger strategies
are difficult to sustain. This is because when prices are not informative, agents make “false positive”
errors by triggering punishments on the equilibrium path disproportionately often, erasing all
benefits from collusion. This key idea exactly follows the insight of Abreu, Milgrom and Pearce
(1991) and Sannikov and Skrzypacz (2007).

Properties of Collusion Sustained by Price-Trigger Strategies. To discern whether informed
speculators trade in a tacitly collusive manner based on observable outcomes, we derive testable
properties of collusion.

Proposition 3.5 (Supra-competitive nature of collusion). In the price-trigger collusive equilibrium, it
holds that

πM ≥ πC > πN , (3.17)

where πC =
(
1 − λC IχC) χCσ2

v is the expected profit of informed speculators in the collusive equilibrium.

If we define ∆C ≡ πC − πN

πM − πN , inequalities in (3.17) can be summarized by ∆C ∈ (0, 1].

Clearly, a greater ∆C signifies a higher collusion capacity. We use ∆C as a measure for collusion
capacity, as in Calvano et al. (2020). Similar measures are also adopted in empirical studies to
identify collusion capacity (e.g., Dou, Wang and Wang, 2023). Consistent with the definitions in
the noncollusive equilibrium and the perfect cartel equilibrium, the price informativeness, denoted
by IC, is defined as the logged signal-noise ratio of prices,

IC = log

[
var(xC

i,t)

var(ut)

]
= log

[(
IχC
)2

(σv/σu)
2
]

.

The market liquidity, denoted by LC, is defined as the inverse sensitivity of the market maker’s
inventory |zt + yt| to the noise order flow ut

LC =
1

∂|zt + yt|/∂ut
=

1
|1 − ξλC| .

The mispricing, denoted by EC, is defined by the percentage deviation of the asset’s price pt from
its conditional expected value

EC =

∣∣∣∣ pC(vt)− EC[vt|yt]

EC[vt|yt]− v

∣∣∣∣ = ∣∣∣∣λC − γC

γC

∣∣∣∣ .

In the next proposition, we derive how ∆C, IC, LC, and EC vary across various market structures
and information environments. The proof is in Appendix D.
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Proposition 3.6 (Effects of Market Structures and Information Environments). If θ is sufficiently
small or ξ is sufficiently large, the price-trigger collusive Nash equilibrium satisfies the following properties:

(i) I ↑ =⇒ ∆C ↓ & IC/IM ↑ & LC/LM ↑ & EC ↓

(ii) σu/σv ↑ =⇒ ∆C ↓ & IC/IM ↑ & LC/LM ↑ & EC ↓

(iii) ρ ↑ =⇒ ∆C ↑ & IC/IM ↓ & LC/LM ↓ & EC ↑

(iv) ξ ↑ =⇒ ∆C ↑ & IC/IM ↓ & LC/LM ↓ & EC ↑

4 Simulation Experiments with AI-Powered Trading

The theoretical results presented in Section 3 are predicated on the assumption that both the
informed speculators and the market maker possess rational expectations. Specifically, they are
capable of discerning (i) the order flows of other informed speculators, albeit with noise; (ii)
the distribution of noise trading flows; and (iii) the distribution of the fundamental value of the
asset. Furthermore, both the informed speculators and the market maker are sufficiently astute,
with the speculators being able to communicate amongst themselves. This allows the informed
speculators to collectively reach and sustain a price-trigger strategy characterized by χC(v) and
q(v), as detailed in (3.12) to (3.14). Meanwhile, this also allows the market maker to perfectly
understand the collusion scheme of these speculators.

It remains uncertain whether autonomous, model-free AI algorithms can learn to sustain
tacit collusion during trading – and thereby generate supercompetitive profits – in line with
the theoretical predictions, which are derived based on stringent, and at times, unrealistic
assumptions. As a proof-of-concept illustration, in this section, we design simulation experiments
to investigate the capability of Q-learning algorithms to attain tacit collusion under asymmetric
information, without the overt acts of communication or agreements typically seen in competition
law infringements (Harrington, 2018).

4.1 Informed AI Speculators with Q-Learning

We consider informed speculators operating Q-learning algorithms (i.e, informed AI speculators)
to learn how to trade. Importantly, informed AI speculators have no direct knowledge of order
flows from their counterparts and are oblivious to the distribution of noisy trading flows and
the fundamental value of the asset. Our experimental design and methodology are similar to the
studies of Calvano et al. (2020) and Asker, Fershtman and Pakes (2022), who explore product
market competition under which asymmetric information and endogenous pricing rules are
absent.

Specifically, each informed AI speculator i ∈ {1, · · · , I} adopts the Q-learning algorithm
described in Section 2. Observing st, informed AI speculator i chooses its order flow xi,t, following
one of the two experimentation modes described in Section 2.3. After receiving the total quantity
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of market orders, the market maker determines the price pt according to its own pricing rules
(see Subsection 4.2 below). The profit of informed AI speculator i in period t is given by
πi,t = (vt − pt)xi,t.

State Variables. State variables, st, are essential for characterizing the recursive relation presented
in equation (2.4). The choice of state variables is not unique. In principle, st can encompass any
information that informed AI speculator i has observed up to the beginning of period t. This
includes both public information and speculator i’s own private information. We utilize the
smallest possible set of state variables in st that can theoretically generate tacit collusion sustained
by price-trigger strategies. First, drawing from the insights in Section 3.4, we include the asset’s
price pt−1 in the preceding period t − 1 as part of st. Second, we incorporate vt, instead of vt−1, as
part of st because informed AI speculators engage in trading activities in period t after observing
vt at the beginning of period t. Thus, the state variable st is defined as st ≡ {pt−1, vt}. Put simply,
we equip the informed AI speculator with a one-period memory to trace the history for decision
making, similar to the approach adopted by Calvano et al. (2020).

One could also expand informed AI speculator i’s state variables in st with its own lagged
order flow xi,t−1, a piece of private information only known by informed AI speculator i, and
a longer memory for lagged asset prices and order flows. In our simulation experiments, we
observe that enlarging the state variable st augments the degree of tacit collusion among informed
AI speculators, leading to higher trading profits. Thus, our deliberate choice to solely incorporate
pt−1 and vt as state variables sets a stringent bar for the Q-learning algorithms to reach tacit
collusion within our economic environment. Furthermore, the Q-learning algorithm with state
variables st ≡ {pt−1, vt} has a convergence speed significantly faster than those incorporating a
more extensive list of state variables.8

The evolution of state variable st is given by st+1 ≡ {pt, vt+1}, where vt+1 is randomly drawn
from the distribution N(v, σ2

v ). The price pt is determined by the market maker, and it depends
on the noise trading flow and the order from the preferred-habitat investor in period t, which
remain unknown to informed AI speculators when they make decisions in period t.

Role of Exploration and Exploitation in Generating Collusive Outcomes. Exploration is not only
critical for approximating the true Q-matrix but also for informed AI speculators to learn and
sustain the collusion through price-trigger strategies discussed in Section 5.1. In each iteration,
the randomly selected order flow typically differs significantly from the exploited order flow
that generates collusive profits. Thus, such deviation, triggered by exploration, provides the only
opportunity for the algorithms to learn the price-trigger strategies to sustain the collusion through
punishment threat.

Exploitation, as a defining characteristic of RL algorithms, plays a vital role in generating
collusion through homogenized learning biases discussed in Section 5.2. Specifically, exploitation
biases the estimation of the Q-matrix away from its true values. This bias leads to excessive

8When dealing with an extensive list of state variables, deep Q-learning algorithms become indispensable.
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overestimation of Q-values for certain choices that can sustain collusive profits, while simulta-
neously underestimating Q-values for other choices in X. The collusion through homogenized
learning biases shares a foundation with the fundamental concept of the “bias-variance tradeoff”
in supervised machine learning algorithms – sacrificing unbiasedness to gain stronger identifica-
tion. Although Q-learning algorithms are inherently self-oriented, they can achieve and maintain
collusive profits through interactions by overestimating the Q-values of choices that facilitate high
collusive profits. Consequently, under the influence of the biased estimated Q-matrix, informed AI
speculators lack incentives to deviate from collusive behavior. Such behaviors constitute a unique
character of AI algorithms, which is intrinsically different from how human traders would behave.

4.2 Pricing Rule of the Adaptive Market Maker

The market maker does not know the distributions of randomness. It stores and analyzes
historical data on asset values, asset prices, the order flows from the preferred-habitat investor,
and the combined order flows from informed AI speculators and the noise trader, i.e., Dt ≡
{(vt−τ, pt−τ, zt−τ, yt−τ)}Tm

τ=1, where Tm is a large integer. The market maker estimates the demand
curve of the preferred-habitat investor and the conditional expectation of the asset value, E [vt|yt],
using the following linear regression models:

zt−τ = ξ0 − ξ1 pt−τ, (4.1)

vt−τ = γ0 + γ1yt−τ + ϵt−τ, (4.2)

where τ = 1, · · · , Tm. The estimated coefficients are ξ̂0,t, ξ̂1,t, γ̂0,t, and γ̂1,t, respectively, based on
the dataset Dt in period t. The pricing rule adaptively adheres to the theoretical optimal policy
using a plug-in procedure:

pt(y) = γ̂0,t + λ̂ty with λ̂t =
θγ̂1,t + ξ̂1,t

θ + ξ̂2
1,t

, (4.3)

where θ is the market maker’s own choice. Therefore, the market maker is adaptive using simple
statistical models. To show robustness of our results, we also consider the economic environment
where the market maker determines the pricing rule with rational expectations or the market
maker adopts Q-learning algorithms to learn the pricing rule (see Appendix F). All the results are
similar to those obtained in the baseline economic environment.

4.3 Repeated Games of Machines

At t = 0, each informed AI speculator i ∈ {1, · · · , I} is assigned with an arbitrary initial Q-matrix
Q̂i,0 and state s0. Then, the economy evolves from period t to period t + 1 as follows:

(1) Informed AI speculator i draws a random value that determines whether it will be in the
exploration mode with probability εt or the exploitation mode with probability 1 − εt in
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period t. The random values drawn by different informed AI speculators are independent.
Subsequently, each informed AI speculator i submits its own order flow xi,t according to its
mode.

(2) The noise trader submits its order flow ut, which is randomly drawn from a normal
distribution N(0, σ2

u).

(3) The preferred-habitat investor submits its order flow zt according to (3.2).

(4) The market maker observes the historical data Dt ≡ {vt−τ, pt−τ, zt−τ, yt−τ}Tm
τ=1 and estimates

the optimal pricing rule according to (4.1) – (4.3).

(5) Each informed AI speculator i realizes its profits (vt − pt)xi,t and updates its Q-matrix
according to equation (2.4).

(6) At the beginning of period t + 1, the state variable for each informed AI speculator evolves
to st+1 = {pt, vt+1}, where vt+1 is drawn from N(v, σ2

v ) and is independent of any other
variables.

The interactions of informed AI speculators and an adaptive market maker, together with the
randomness caused by the noise trader and stochastic asset values in the background, make the
stationary equilibrium difficult to achieve. The economic environment in our study is substantially
more complex than that of Calvano et al. (2020) whose setting does not have randomness,
information asymmetry, or endogenous pricing rules. As noted by Calvano et al. (2020), the
player’s optimization problem is inherently nonstationary when its rivals vary their actions
over time due to experimentation or learning. Theoretical analysis of the Q-learning algorithms
playing repeated games is generally not tractable. Rather than applying stochastic approximation
techniques to AI agents, we follow Calvano et al. (2020) by simulating the exact stochastic dynamic
system a large number of times to smooth out uncertainty. There is no theoretical guarantee that
Q-learning agents will settle on a stable outcome, nor that they will correctly learn an optimal
policy. However, we can always verify this in our simulations ex post to ensure that our analyses
are conducted based on the stationary equilibrium.

4.4 Discretization of State and Action Space

We choose the following grids for the state variable st ≡ {pt−1, vt} and action variable xi,t. For
computational efficiency, we approximate the normal distribution N(v, σv) using a sufficiently
larger number of nv grid points, V = {v1, · · · , vnv}. Our discretization ensures that these nv grid
points have equal probabilities but are unequally spaced. Specifically, the probability of each
grid point is Pk = 1/nv. The locations of grid points are chosen based on vk = v + σvΦ−1((2k −
1)/(2nv)) for k = 1, · · · , nv, where Φ−1 is the inverse cumulative density function of a standard
normal distribution. The mathematical property of Φ−1 implies that grid points around the
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mean v are closer to each other than those far away from the mean. The speed of convergence is
significantly increased because all nv grid points of vt have equal probabilities.9

We construct the discrete grid points for informed AI speculators’ order xi,t based on their
optimal actions in the noncollusive Nash equilibrium and perfect cartel equilibrium. According to
our model in Section 3, the order values in the two equilibria are given by xN = (v − v)/((I + 1)λ)
and xM = (v − v)/(2Iλ). We specify informed AI speculators’ action space by discretizing the
interval [xM − ι(xN − xM), xN + ι(xN − xM)] for v > v and [xN − ι(xM − xN), xM + ι(xM − xN)] for
v < v into nx equally spaced grid points, i.e., X = {x1, · · · , xnx}. The parameter ι > 0 ensures that
informed AI speculators can choose order flows beyond the theoretical levels corresponding to the
noncollusive Nash equilibrium and perfect cartel equilibrium. As the action space is discrete, the
exact order flows corresponding to the perfect cartel equilibrium may not be feasible. Despite this,
our simulations show that informed AI speculators can collude with each other to a large degree.

The grid points of price pt are similarly chosen as those of xi,t, except for considering the noise
trader’s impact on prices. Specifically, in our numerical experiments, the noise trader’s order is
drawn randomly from the normal distribution N(0, σu), without imposing any discretization or
truncation. In our theoretical framework in Section 3, the market maker sets the price according
to the total order flow yt, which is the sum of informed AI speculators’ order ∑I

i=1 xi,t and the
noise trader’s order ut. Because ut follows an unbounded normal distribution, the theoretical
range of the price pt is unbounded. To maintain tractability, in our numerical experiments,
we set the upper bound at pH = v + λ(I max(xM, xN) + 1.96σu) and the lower bound at pL =

v + λ(I min(xM, xN)− 1.96σu), corresponding to the 95% confidence interval of the noise trader’s
order distribution, N(0, σu). The grid points of pt are chosen by discretizing the interval [pL −
ι(pH − pL), pH + ι(pH − pL)] into np grids, i.e., P = {p1, · · · , pnp}.

4.5 Initial Q-Matrix and States

We initialize the Q-matrix at t = 0 using the discounted payoff that would accrue to informed
AI speculator i if the other informed AI speculators randomize their actions uniformly over
the grid points defined by X.10 Moreover, we consider a zero order flow from the noise trader,

9All the results are robust to the use of alternative methods to discretize the state variable vt. For example, one
commonly used method is to use nv equally spaced points over a sufficiently large interval, e.g., [v − 6σv, v + 6σv].
The probability of each grid point is computed based on the probability mass function of the normal mass function,
i.e., Pk = exp

(
−(k − v)2/(2σ2

v )
)

for k = 1, · · · , nv. Compared to the discretization method we use, this alternative
method yields similar quantitative results but has a much slower convergence. The reason is that it assigns very small
probabilities to the left-most and right-most grid points. As a result, the Q-matrix’s cells far away from the mean v are
updated at much lower frequencies than those closer to the mean. An infrequent update for the cells far away from the
mean in turn requires many more updates for other cells of the Q-matrix to stabilize. Thus, the global convergence
speed is reduced significantly due to the buckets effect. In fact, as nv → ∞, the two alternative methods can both
perfectly capture the theoretical distribution of vt but yield vastly different convergence speed for the Q-learning
algorithms.

10Adopting different initial values for the Q-matrix do not significantly alter the results. In RL algorithms, another
common strategy to initialize the Q-matrix is to use optimistic initial values. That is, initializing the Q-matrix with
sufficiently high values so that subsequent iterations tend to reduce the values of the Q-matrix. This approach enables
Q-learning algorithms to visit all actions multiple times at the beginning, resulting in early improvement in estimated
action values. Thus, setting optimistic initial values is in some sense equivalent to adopting a thorough exploration
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corresponding to the expected value of the distribution N(0, σ2
u). Specifically, for each informed

AI speculator i = 1, · · · , I, we set its initial Q-matrix Q̂i,0 at t = 0 as follows:

Q̂i,0(pm, vk, xn) =
∑x−i∈X [vk − (v + λ(xn + (I − 1)x−i))] xn

(1 − ρ)nx
, (4.4)

for (pm, vk, xn) ∈ P×V×X. The initial states of our simulation, s0 = {p−1, v0}, are randomized
uniformly over V×P.

4.6 Specification of Learning Modes

We adopt an exponentially time-declining state-dependent exploration rate for informed AI
speculators,

εt(vk) = e−βt(vk), (4.5)

where the parameter β > 0 governs the speed that informed AI speculators’ exploration rate
diminishes over time and the variable t(vk) captures the number of times that the exogenous state
vk ∈ V has occurred in the past.11 The specification of t(vk) implies that the exploration rate is
state dependent, which ensures that informed AI speculators can sufficiently explore their actions
for all grid points of the exogenous state variable vt.

The specification (4.5) implies that initially, Q-learning algorithms are almost always in the
exploration mode, choosing actions randomly. However, as time passes, Q-learning algorithms
gradually switch to the exploitation mode.

4.7 Parameter Choice

The parameters used in our numerical experiments can be categorized into three groups according
to their roles. The environment parameters are the parameters that characterize the underlying
economic environment in our experiments. Importantly, the values of most of these parameters
are neither known to informed AI speculators nor to the market maker.12 They instead adopt Q-
learning algorithms to learn how to make decisions in an unknown environment. The simulation
parameters are the parameters that determine our numerical experiments, such as the number of
discrete grid points, simulation sessions, etc. The hyperparameters are the parameters that control
the machine learning process. Below, we describe the choice of parameters for each category.

Environment Parameters. Across all simulation experiments, we set v = 1, σv = 1, and θ = 0.1.
The parameter v determines the expected value of vt, and thus we normalize its value to unity
without loss of generality. The parameter σv plays a similar role as σu because what matters in our

over the entire action space early in the learning phase and then exploitation later on.
11In principle, we can allow informed AI speculators to choose their exploration rate conditional on the realized

value of vt because they perfectly observe vt, which is one of their state variables st = {pt−1, vt}.
12An exception is ρ and θ. The parameter ρ is known to informed AI speculators as this parameter captures their

own discount rates. The parameter θ is known to the market maker as this is its own choice.
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model in Section 3 is the ratio σu/σv. We thus normalize the value of σv to unity. The parameter θ

determines the extent to which the market maker focuses on price discovery. We find that the
implications of different values of θ can be analyzed similarly by varying the value of ξ. Thus, for
simplicity, we fix the value of θ at 0.1 throughout our simulation experiments.

In the baseline economic environment, we set I = 2, σu = 0.1, ρ = 0.95, and ξ = 500. We
extensively study the implications of different values for these parameters. Specifically, we
consider different number of informed AI speculators ranging from I = 2 to I = 6, different levels
of background noise ranging from σu = e−5 to σu = e5, different discount rates ranging from
ρ = 0.5 to ρ = 0.95, and different values of ξ ranging from ξ = 0 to ξ = 500.

Simulation Parameters. We set ι = 0.1 so that informed AI speculators can go beyond the
theoretical bounds of order flows by 10%. We choose nx = 15 and np = 31. These grid points
are sufficiently dense to capture the economic mechanism we are interested in. Importantly,
our choice of np ≈ 2nx ensures that, all else equal, a one-grid point change in one informed AI
speculator’s order will result in a change in price pt over the grid defined by P. If the grid defined
by P is coarser, informed AI speculators will not be able to detect small deviations of peers even
in the absence of noise, which in turn lowers the possibility of algorithmic collusion through
price-trigger strategies.

We use nv = 10 grid points to approximate the normal distribution of vt. Under our discretiza-

tion, the standard deviation of vt is σ̂v =
√

∑N
k=1 P(vk)(vk − v)2 = 0.938, which is close to the

theoretical value σv = 1. In the remainder of this paper, the theoretical benchmarks of noncollusive
Nash equilibrium and perfect cartel equilibrium are computed using σ̂v, to be consistent with the
discretization of vt adopted in our simulation experiments.

All the results are robust if we choose a larger nv, nx, np, or ι, as long as the hyperparameters,
α and β, are adjusted accordingly to ensure sufficiently good learning outcomes. However, the
cost of using denser grids is that significantly longer time is needed for Q-learning algorithms to
fully converge to limit strategies.

We set Tm = 10, 000 so that the market maker stores sufficiently long time-series data to
estimate the linear regressions (4.1) and (4.2). In our simulation experiments, we verify that the
estimates of ξ̂0,t, ξ̂1,t, γ̂0,t, and γ̂1,t can accurately recover the preferred-habitat investor’s demand
curve and the conditional expectation of the asset value, E [vt|yt]. Increasing the value of Tm will
not change any quantitative results, but it adds more computation burden.

For each experiment with a particular choice of environment parameters, we simulate the
Q-learning algorithms by N = 1, 000 times. All the random initial states and shocks (i.e., vt, ut,
and exploration status of each informed AI speculator for all t ≥ 0) are independently drawn from
identical distributions across the N simulation sessions of the experiment. In principle, the results
of different experiments can differ both because of the difference in environment parameters
and the difference in the realized values of random variables. To ensure that comparisons across
different experiments are not contaminated by the latter, we generate a large set of random
variables for all N simulation sessions offline and store in the high-powered-computing server.
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The same set of random values is used when we compare results across the experiments with
different environment parameters in Sections 5 and 6.

Hyperparameters. The hyperparameters that control the learning process of Q-learning algo-
rithms are set at α = 0.01 and β = 10−5. All results are robust to choosing different values of α

and β so long as they are in the reasonable range that ensures sufficiently good learning outcomes.
Our baseline choice of β implies that any action xk ∈ X is visited purely by random exploration
by nv/[(1− exp(−10−5))nx] = 66, 660 times on average before exploration completes.13 In Section
6.3, we study the experiments with different values of α and β as well as the experiments that
allow informed AI speculators to adopt different values of α. In Section 7.2, we develop a two-tier
Q-learning algorithms that allow informed AI speculators to learn the choice of α.

4.8 Convergence

Strategic games played by Q-learning algorithms do not have general convergence results. To
verify convergence, a practical criterion is to check whether each player’s optimal strategy does
not change for a long period of time. Note that convergence is determined by the stationarity of
players’ optimal strategies rather than the stationarity of players’ learned Q-matrices. In fact, in a
stochastic environment, the Q-matrix can never remain unchanged because randomly realized
shocks will always result in an update for some cells of the Q-matrix. However, the slight update
in the Q matrix does not necessarily result in a change in the optimal strategies. This is why
convergence in optimal strategies can be achieved in principle, even in a stochastic environment
with Q-learning algorithms playing repeated games.

In general, setting a smaller value of α or β requires longer time for the algorithm to reach
convergence. For example, with β = 10−5, informed AI speculators’ Q-learning algorithms are
still doing exploration with e−βT′/nv = 36.8% probability after T′ = 1, 000, 000 periods. It is almost
by definition that the optimal strategies are nonstationary with an exploration rate that is far away
from zero. Thus, a necessary condition for all Q-learning algorithms to reach stationary optimal
strategies is that exploration rate is virtually zero, say, after 10,000,000 periods. Moreover, with
a small α, the Q-matrix is updated slowly when new information arrives. As a result, informed
AI speculators can only slowly learn their optimal actions, which are based on their learned
Q-matrices. A sufficiently long time is needed to ensure the convergence of optimal strategies.

Per discussions above, we adopt a stringent criterion of convergence by requiring all informed
AI speculators’ optimal strategies to stay unchanged for 1,000,000 consecutive periods. All
N = 1, 000 simulation sessions are simulated until convergence. The number of periods needed
to reach convergence varies considerably across experiments depending on the particular choice
of environment parameters. Moreover, even for the same experiment, the number of periods
needed to reach convergence can vary significantly across the N simulation sessions, depending

13We do not have an explicit formula for the expected number of times a cell in the Q-matrix being visited by random
exploration because the state variable pt−1 in st = {pt−1, vt} is also affected by the noise trader’s random order and
the pricing rule adopted by the market maker.
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on the realized values of random variables. Among all the experiments we study, the number
of periods to reach convergence ranges from about 20 million to about 10 billion. To speed up
computations, our programs are written in C++, using −O2 to optimize the compiling process.
The C++ program is run with parallel computing in a high-powered-computing server cluster
with 376 CPU cores in total. It takes about 1 min to 6 hours to finish all N simulation sessions in
one experiment, depending on the total number of iterations needed to reach convergence.

4.9 Metrics Reflecting Collusive Behavior

Motivated by our theoretical results in Section 3, we calculate three simple metrics that can be
indicative of potential collusive behavior among informed AI speculators. The values of all three
metrics are computed in each simulation session over T = 100, 000 periods, after informed AI
speculators’ optimal strategies fully converge to the limit strategies according to the convergence
criterion in Section 4.8. By taking the average over a large number of periods, we smooth out
the stochastic underlying economic environment, caused by the randomness in the noise trader’s
order ut and the stochastic variation of the asset value vt over time.

Collusion Capacity. The degree of collusion can be reflected by the Delta metric defined as
follows:

∆C =
1
I

I

∑
i=1

∆C
i , with ∆C

i =
πi − πN

i

πM
i − πN

i
, (4.6)

where πi ≡ ∑Tc+T
t=Tc

πi,t(vt, ut) is the average profits of informed AI speculator i over T periods
after Q-learning algorithms reach convergence at Tc. The values of πN

i = ∑Tc+T
t=Tc

πN
i (vt, ut) and

πM
i = ∑Tc+T

t=Tc
πM

i (vt, ut) are the average profit that informed speculator i would obtain, theoretically,
in the noncollusive Nash equilibrium or perfect cartel equilibrium, respectively. Because informed
speculators are symmetric, we have πN

i (vt, ut) ≡ πN(vt, ut) and πM
i (vt, ut) ≡ πM(vt, ut) for all

i = 1, .., I. Specifically, according to the formulas in Section 3.2, conditional on the realized values
of vt and ut in period t, informed speculator i’s profit in the noncollusive Nash equilibrium is

πN(vt, ut) =
[
vt − pN(IxN(vt) + ut)

]
xN(vt), for i = 1, · · · , I, (4.7)

where xN(vt) = χN(vt − v) and pN(IxN(vt) + ut) = v + λN(IxN(vt) + ut). Similarly, according
to the formulas in Section 3.3, conditional on the realized values of vt and ut in period t, informed
speculator i’s profit in the perfect cartel equilibrium is

πM(vt, ut) =
[
vt − pM(IxM(vt) + ut)

]
xM(vt), for i = 1, · · · , I, (4.8)

where xM(vt) = χM(vt − v) and pM(IxM(vt) + ut) = v + λM(IxM(vt) + ut).
In principle, the value of ∆C should range from 0 to 1. A larger ∆C implies that informed

AI speculators attain higher profits. The value of ∆C can never be larger than 1 because πM
i is

the highest theoretically possible average profit. In fact, because informed AI speculators can
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only choose actions over discrete grids, by design, it is not possible to obtain ∆C = 1 in our
simulation experiments. However, it is possible to achieve a ∆C below 0 under the limit strategies
of informed AI speculators. This outcome implies that informed AI speculators failed to learn a
good approximation of the actual Q-matrix, and as a result, they achieve average profits lower
than those in the noncollusive Nash equilibrium.

Profit Gain Relative to Noncollusion. The Delta metric is informative about collusive behav-
ior. However, it does not tell us the relative magnitude of supra-competitive profits. We thus
also calculate the extra profit gain relative to the profits that informed AI speculators would
obtain in the noncollusive Nash equilibrium theoretically. Specifically, the relative profit gain is

∑I
i=1 πi/ ∑I

i=1 πN
i , where πi and πN

i are calculated similarly as those in equation (4.6).

Order Sensitivity to Asset Value. In our model, each informed speculator’s order flows xi,t are
linear in the asset value vt, as captured by xi,t = χC(vt − v). Our model implies that informed
speculators are more conservative in placing their orders if there is implicit collusion. That is, the
sensitivity of order flows xi,t to the asset value vt − v is lower when informed speculators collude
more, i.e., χM ≤ χC < χN .

In our simulation experiments, informed AI speculators directly learn xi,t without imposing
the linearity restriction between xi,t and vt. Despite this, we find that informed AI speculators
learn roughly linear strategies (see Figure 8). We estimate χ̂C based on the recorded asset values
and order flows {vt, xi,t}Tc+T

t=Tc
for each AI speculator i = 1, · · · , I, by running the following linear

regression:
xi,t = χC

i,0 + χC
i,1vt + ϵt. (4.9)

Consistent with our model, the estimates based on the simulated data satisfy χ̂C
i,0 ≈ −vχ̂C

i,1 in the
unrestricted regression (4.9). The estimate χ̂C

i,1 captures the sensitivity of xi,t to vt corresponding
to the optimal trading strategies after Q-learning algorithms converge. We further compute the
average sensitivity of informed AI speculators as χ̂C = 1

I ∑I
i=1 χ̂C

i,1.

4.10 Measures of Price Informativeness, Market Liquidity, and Mispricing

Price Informativeness. Consistent the our model, the degree of price informativeness in our
simulation experiments is measured by the log signal-noise ratio as follows:

IC = log

[
var(xC

i,t)

var(ut)

]
= log

[
(Iχ̂C)2(σ̂v/σu)

2
]

, (4.10)

where σ̂v is the standard deviation of vt under our discrete grid points in V.
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Market Liquidity. Consistent the our model, the market liquidity in period t is measured by
the inverse sensitivity of market maker’s inventory |zt + yt| to noise order flows ut

LC
t =

1
∂|zt + yt|/∂ut

=
1

|1 − ξλ̂t|
, (4.11)

where zt = −ξ(pt − v) = −ξλ̂tyt and λ̂t is given by equation (4.3). The average market liquidity
is computed as LC = ∑Tc+T

t=Tc
LC

t .

Mispricing. Consistent the our model, the magnitude of mispricing in period t is measured by
the percentage deviation of the asset’s price pt from its conditional expected value

EC
t =

∣∣∣∣ pt − E[vt|yt]

E[vt|yt]− v

∣∣∣∣ =
∣∣∣∣∣ λ̂t − γ̂1,t

γ̂1,t

∣∣∣∣∣ , (4.12)

where pt = γ̂0,t + λ̂tyt and E[vt|yt] = γ̂0,t + γ̂1,tyt; γ̂0,t and γ̂1,t are estimated from (4.2). The
average mispricing is computed as EC = ∑Tc+T

t=Tc
EC

t .

5 AI Collusion under Information Asymmetry

Our model suggests that informed speculators can achieve supra-competitive profits through
implicit collusion when both price efficiency and noise trading risks are low (see Proposition
3.4). In this section, we conduct simulation experiments with informed AI speculators whose
trading is powered by Q-learning algorithms. We are mainly interested in four questions. First,
can informed AI speculators learn to collude, even without communicating with each other or
possessing any information about the underlying economic environment? Second, if collusion
exists, what are the mechanisms that generate such collusive behavior among informed AI
speculators? Third, how price efficiency and noise trading risk affect the trading strategies of
informed AI speculators. Fourth, what are the implications of AI-powered trading for price
informativeness, market liquidity, and mispricing in financial markets?

In Subsection 5.1, we show that in environments with low price efficiency and low noise
trading risks, informed AI speculators are able to learn price-trigger strategies to achieve implicit
collusion, which is quite similar to the mechanism characterized in our model in Section 3.4. In
Subsection 5.2, we show that in environments with low price efficiency and high noise trading
risks, informed AI speculators are not able to learn price-trigger strategies to achieve collusion, as
predicted by our model. However, they can still achieve supra-competitive profits due to biased
learning. The equilibrium of informed AI speculators resembles a self-confirming equilibrium
(Fudenberg and Kreps, 1988; Fudenberg and Levine, 1993) with collusion rather than a Nash
equilibrium. In Subsection 5.3, we study the role of price efficiency and noise trading risks
in determining informed AI speculators’ profits and collusive behavior. In Subsection 5.4, we
illustrate informed AI speculators’ trading strategies. Finally, in Subsection 5.5, we study the
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implications of AI-powered trading for price informativeness, market liquidity, and mispricing in
financial markets.

5.1 Artificial Intelligence: Collusion through Price-Trigger Strategies

In this subsection, we study informed AI speculators’ behavior when the environment has
low price efficiency (i.e., ξ = 500) and low noise trading risks (i.e., σu/σv = 10−1). The other
parameters are set according to the baseline economic environment described in Section 4.7.
Across all N = 1, 000 simulation sessions, the average value of ∆C is about 0.73 and the average
profit of informed AI speculators is about 9% higher than the profit in the noncollusive equilibrium.
Thus, our simulation results indicate that informed AI speculators can achieve supra-competitive
profits. Below, we examine the mechanism that sustains their collusion. We show that informed AI
speculators are intelligent enough to learn price-trigger strategies, which allows them to sustain
collusion after their Q-learning algorithms converge. These simulation results with informed
AI speculators are similar to the theoretical predictions of our model with rational-expectation
informed speculators.

5.1.1 Price-Trigger Strategy

Motivated by our model, we examine whether the optimal strategies learned by informed AI
speculators are consistent with the price-trigger strategy illustrated in Section 3. To this end, in
Figure 1, we study the impulse response function (IRF) after an exogenous shock to the noise
order flow, which further affects the asset’s price given the market maker’s pricing rule.

Specifically, in each of the N = 1, 000 simulation sessions, we focus on the economic environ-
ment after informed speculators’ Q-learning algorithms converge. Throughout the IRF experiment,
for all t ≥ 0, both informed AI speculators play their learned optimal strategies and the asset’s
price pt is determined by the market maker according to its learned pricing rule. In period t = 3,
we introduce an unexpected exogenous shock ∆ut to the noise order flow ut. The direction of the
shock is made to mimic the price impact of a hypothetical profitable deviation from informed AI
speculators. That is, we choose ∆ut > 0 if vt > v and ∆ut < 0 if vt < v. Thus, all else equal, this
exogenous shock will unexpectedly increase the asset’s price pt if vt > v and decrease pt if vt < v.

We are interested in the IRF of three outcome variables. The first outcome variable is the
price’s percentage deviation from its long-run mean, defined by ( p̃t − E[ p̃t])/E[ p̃t], where p̃t =

(pt − v)sgn(vt − v) and sgn(·) is the sign function. The variable p̃t captures the difference between
the asset’s price pt and its expected value. The sign function ensures that p̃t > 0 because according
to our model and simulation results, when vt > v, we have pt > v and sgn(vt − v) = 1; when
vt < v, we have pt < v and sgn(vt − v) = −1. In addition, the definition of p̃t ensures that
the exogenous shock always increases its value, enabling us to take the average of IRF across
simulation paths for expositional purposes. Specifically, if vt > v, the exogenous shock will
increase pt, and because sgn(vt − v) = 1, p̃t also increases. If vt < v, the exogenous shock will
decrease pt, and because sgn(vt − v) = −1, p̃t also increases. The second outcome variable is
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each informed AI speculator’s profit’s percentage deviation from its long-run mean, defined
by (πi,t − E[πi,t])/E[πi,t]. The third outcome variable is each informed AI speculator’s order
flow’s percentage deviation from its long run mean, defined by (x̃i,t − E[x̃i,t])/E[x̃i,t], where
x̃i,t = xi,tsgn(vt − v). The sign function ensures that x̃i,t > 0 because according to our model and
simulation results, we have xi,t > 0 when vt > v and xi,t < 0 when vt < v.

To clearly present the IRF, we calculate the average value of the above three interested outcome
variables in two steps. First, for each of the N = 1, 000 simulation sessions, we use the learned
optimal strategies to simulate the IRF 10,000 times, with independently drawn random shocks to
vt and ut. We smooth out the randomness in the economic environment by taking the average
IRF across these 10,000 independent paths. This is referred to as the IRF for each simulation
session i = 1, ..., N. Second, we compute the average IRF across N = 1, 000 simulation sessions.
This allows us to smooth out the randomness (i.e., initial states and exploration choices) during
the learning process. However, our results hold not merely to the average IRF of N = 1, 000
simulation sessions. Figure 2 plots the distribution of the impulse responses across the N = 1, 000
simulation sessions. Although the magnitudes of the deviations in prices and trading flows differ
significantly across simulation sessions, the [25%, 75%] and [5%, 95%] confidence intervals indicate
that price-trigger strategies are consistently adopted by informed AI speculators.

Figure 1 plots the average IRF across the N = 1, 000 simulation sessions for each outcome
variable of interest. We consider exogenous shocks of different magnitudes. In the scenario with
“small deviation,” |∆ut| is roughly 0.5% of the average magnitude of informed AI speculators’
order flow |xi,t|. Thus, it generates a small impact on the asset’s price pt at t = 3. In the scenario
with “medium deviation” and “large deviation,” |∆ut| is about 2.5% and 7% of the average
magnitude of informed AI speculators’ order flow |xi,t|, respectively, resulting in much larger
changes in pt.

Panel A plots the price’s percentage deviation from its long-run mean. Due to the exogenous
shock, the asset’s price deviates from its long-run mean in period t = 3, and the size of price
deviation increases with the magnitude of the exogenous shock. Panel B plots the profit’s
percentage deviation from its long-run mean for one informed AI speculator. The other informed
AI speculator has similar profit dynamics. It is shown that in period t = 3, the price deviation
reduces the informed AI speculator’s profit, and the impact increases with the magnitude of the
price deviation. Panel C plots the order flow’s percentage deviation from its long-run mean for
one informed AI speculator. The deviation is zero in period t = 3 because informed AI speculators
submit their orders before observing the price in the same period.

In period t = 4, panel C shows that in response to medium and large price deviations occurred
in the previous period, the informed AI speculator’s order flow significantly deviates from its
long-run mean. Moreover, the magnitude of the order flow deviation is similar for the medium
and large price deviation. However, the informed AI speculator’s order flow does not respond to
small price deviation. These patterns resemble the price-triggers strategies described in Section
3. Panel A shows that for the medium and large deviation cases, the percentage deviation of
the asset’s price continues to increase as a result of increased order flows from informed AI
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Note: In each simulation session, we focus on the economic environment after informed speculators’ Q-learning
algorithms converge. Throughout the IRF experiment, for all t ≥ 0, both informed AI speculators play their learned
optimal strategies and the asset’s price pt is determined by the market maker according to its learned pricing rule. In
period t = 3, we introduce an unexpected exogenous shock ∆ut to the noise order flow ut. The direction of the shock
is made to mimic the price impact of a hypothetical profitable deviation from informed AI speculators. That is, we
choose ∆ut > 0 if vt > v and ∆ut < 0 if vt < v. Thus, all else equal, this exogenous shock will unexpectedly increase
the asset’s price pt if vt > v and decrease pt if vt < v. The three curves in each panel represent different magnitudes of
the shock. Panel A plots the price’s percentage deviation from its long-run mean. Panels B and C plot the percentage
deviation of profit and order flow from its long-run mean for one informed AI speculator, respectively. All curves are
average values across N = 1, 000 simulation sessions, where each session is independently simulated 10,000 times to
smooth out the effect of random shocks to vt and ut. We set σu/σv = 10−1. The other parameters are set according to
the baseline economic environment described in Section 4.7.

Figure 1: IRF after an exogenous shock to ut (σu/σv = 10−1).

speculators. This, in turn, results in continued profit losses for informed AI speculators (see panel
B). By contrast, for the small deviation case, both of the asset’s price and informed AI speculators’
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Note: The experiment is similar to that described for Figure 1. Panels A and B plot the two speculators’ order flow’s
percentage deviation from the long-run mean, and panels C and D plot their profit’s percentage deviation from the
long-run mean. In each panel, the dotted line represents the median value, the boxes represent the 25th and 75th
percentiles, and the dashed intervals represent the 5th and 95th percentiles across N = 1, 000 simulation sessions.
Parameters are set as in Figure 1.

Figure 2: Confidence intervals for the IRF after an exogenous shock to ut (σu/σv = 10−1).

profits revert back to the long-run mean.
In period t = 5, panel C shows that informed AI speculators’ order flows abruptly return to

the long-run mean for both the medium and large deviation cases. As a result, both the price and
profit deviation abruptly return to zero (see panels A and B).
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5.1.2 Punishment for Deviation

According to our model in Section 3, price-trigger strategies are implemented based on whether
the asset’s price in the preceding period deviates from its long-run mean, which could be caused
by either the random order flows from the noise trader or the order flows from informed AI
speculators. Informed AI speculators cannot distinguish what causes price deviation.

In this section, we complement the experiments in Section 5.1.1 by further studying the IRF
after a unilateral deviation by one of the informed AI speculators. Specifically, in each of the
N = 1, 000 simulation sessions, we focus on the economic environment after informed speculators’
Q-learning algorithms converge. Throughout the IRF experiment, for all t ≥ 0, both informed
AI speculators play their learned optimal strategies and the asset’s price pt is determined by the
market maker according to its learned pricing rule. In period t = 3, we exogenously force one
informed AI speculator i to have a one-period deviation from its learned optimal strategy. The
one-period deviation in period t = 3 is made to the direction that increases the contemporaneous
profit of the deviating speculator (i.e., we exogenously increase the deviating speculator’s order
by ∆xi,t if vt > v and reduce its order by ∆xi,t if vt < v). We choose the deviation size ∆xi,t to be
one grid point in the order space X, which ensures that the resulting price deviation is similar to
the medium deviation case in panel A of Figure 1 for comparison purposes.

Panel A of Figure 3 plots the order flow’s percentage deviation for both the deviating speculator
and the nondeviating speculator. In period t = 3, on average, the deviating speculator’s order
flow deviates from the long-run mean by 2.5% while the nondeviating speculator’s order flow
remains unchanged. In period t = 4, the deviation gets punished as the nondeviating speculator
behaves more aggressively, deviating its order flow from the long-run mean by 4.2%.

Rather than reducing its order flow, the deviating speculator further increases its order flow
to 4.1% of the long-run mean in period t = 4, slightly below that of the nondeviating speculator.
This form of overshooting exists for small deviations. As shown in panel A of Figure 5, if we
consider a larger deviation, the deviating speculator would reduce its order flow in period t = 4.
Regardless of whether its a small or a large deviation, both informed AI speculators abruptly
return to the predeviation level of order flows in period t = 5.

Panel B of Figure 5 plots the profit’s percentage deviation from its long-run mean for each
informed AI speculator. In period t = 3, the deviating speculator’s profit increases by 0.8% of
the long-run mean while the nondeviating speculator’s profit decreases by 1.6%. In period t = 4,
due to the punishment strategy implemented by the nondeviating speculator, the profit of the
deviating speculator drops substantially from 0.8% to −2.4% of the long-run mean. The expected
discounted profit of deviation is about −1.6% of the long-run mean for the deviating speculator,
indicating that deviation from the learned optimal strategies is not profitable.

Panel C of Figure 3 plots the price’s percentage deviation from its long-run mean. In period
t = 3, due to the order deviation by one of the informed AI speculators, the asset’s price deviates
from its long-run mean by 1.2%. In fact, this is the force that triggered both informed AI
speculators to change their order flows in period t = 4 because pt−1 is the only state variable that
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Note: In each simulation session, we focus on the economic environment after informed speculators’ Q-learning
algorithms converge. Throughout the IRF experiment, for all t ≥ 0, both informed AI speculators play their learned
optimal strategies and the asset’s price pt is determined by the market maker according to its learned pricing rule.
In period t = 3, we exogenously force one informed AI speculator i to have a one-period deviation from its learned
optimal strategy. The one-period deviation in period t = 3 is made to the direction that increases the contemporaneous
profit of the deviating speculator (i.e., we exogenously increase the deviating speculator’s order flow by ∆xi,t if vt > v
and reduce its order flow by ∆xi,t if vt < v). The deviation size ∆xi,t is one grid point in the order space X. Panels A
and B plot the percentage deviation of profit and order flow from its long-run mean for both informed AI speculator,
respectively. Panel C plots the price’s percentage deviation from its long-run mean. All curves are average values
across N = 1, 000 simulation sessions, where each session is independently simulated 10,000 times to smooth out the
effect of random shocks to vt and ut. We set σu/σv = 10−1. The other parameters are set according to the baseline
economic environment described in Section 4.7.

Figure 3: IRF after a unilateral deviation (σu/σv = 10−1).

records the deviation status in the preceding period t = 3. The asset’s price continues to increase
to 4.2% in period t = 4 because of the overshooting in the deviating speculator’s order flow, and
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Note: The experiment is similar to that described for Figure 3. Panels A and B plot the two speculators’ order flow’s
percentage deviation from the long-run mean, and panels C and D plot their profit’s percentage deviation from the
long-run mean. In each panel, the dotted line represents the median value, the boxes represent the 25th and 75th
percentiles, and the dashed intervals represent the 5th and 95th percentiles across N = 1, 000 simulation sessions.
Parameters are set as in Figure 3.

Figure 4: Confidence intervals for the IRF after a unilateral deviation (σu/σv = 10−1).

then abruptly returns to the long-run mean in period t = 5 as the two informed AI speculators
revert to their predeviation behavior.

Figure 4 plots the distribution of the IRF across the N = 1, 000 simulation sessions and shows
that the deviating speculator gets punished through price-trigger strategies in most simulation
sessions. To further show robustness, in panels A to C of Figure 5, we present the IRF of a larger
deviation by setting ∆xi,t equal to three grid points in the order space X. The nondeviating
speculator still implements a punishment strategy by substantially increasing its order flow in
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period t = 4 to punish the deviating speculator’s defect in period t = 3. The expected discounted
profit of deviation is negative for the deviating speculator. In panels D to F of Figure 5, we present
the IRF in an economic environment with higher noise trading risks by setting σu/σv = 1. In
this environment, the two informed AI speculators achieve a small amount of supra-competitive
profits with an average value of ∆C = 0.2. Even with such a low level of supra-competitive profits,
we still see that the nondeviating speculator implements price-trigger strategies to deter deviations.
However, the magnitude of both deviations and punishments in panels D to F of Figure 5 are
smaller than those in Figure 3. This is consistent with a lower average ∆C and the theoretical
insight that collusive behavior becomes more difficult to achieve when informed AI speculators
are less able to monitor peers’ deviations due to the larger information asymmetry caused by
higher noise trading risks.

5.1.3 Discussions

Except for the duration of punishment, the impulse responses presented in Figures 1, 3 and 5 are
quite consistent with the price-trigger strategies described in our model in Section 3. The patterns
observed in our experiments coincide with our theoretical predictions that when the environment
has low price efficiency and low noise trading risks, informed AI speculators are able to collude
with each other by adopting price-trigger strategies to deter deviations. Moreover, collusion is
more difficult to attain as noise trading risks become large.

Q-learning algorithms can learn price-trigger strategies because of experimentations. When
one informed AI speculator switches to the exploration mode in the process of learning, it would
choose actions randomly. Such behavior is effectively similar to defect from an implicit collusive
agreement, if any. When this occurs, the two informed AI speculators would be trapped in
the punishment phase until further explorations by one or both informed AI speculators occur.
Informed AI speculators are able to learn coordination strategies because exploration modes will
eventually stop, a necessary condition for Q-learning algorithms to converge.

Our finding that informed AI speculators are able to learn price-trigger strategies is similar
to the finding of Calvano et al. (2020) that informed AI speculators learn grim-trigger strategies
to sustain collusion in a perfect-information environment with Bertrand competition. However,
different from Calvano et al. (2020), after punishment in period t = 4, rather than gradually
returning to predeviation behavior, the informed AI speculators in our experiments abruptly
return to their predeviation behavior. This difference is mainly due to the information asymmetry
introduced by noise trading risks (i.e., σu > 0) and the stochastic asset value (i.e., σv > 0). Both
model ingredients make informed AI speculators more difficult to sustain collusion by punishment
threat, not just in the simulation experiments with informed AI speculators, but also in the model
with rational-expectation informed speculators in Section 3.

In particular, our economic environment differs from that of Calvano et al. (2020) in two
main aspects. First, we consider a stochastic environment where the asset’s value vt in each
period is drawn from an i.i.d. distribution. In this stochastic setting, it becomes more difficult
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Figure 5: Robustness of IRF: larger deviation or higher noise trading risks (σu/σv = 1).

for the two informed AI speculators to learn punishment strategies to sustain collusion than in
the deterministic setting with a constant vt.14 Second, the noise trader’s random order flows
generate information asymmetry to informed AI speculators, which makes grim-trigger strategies
infeasible. As a result, informed AI speculators have to adopt price-trigger strategies to collude.
In both the model with rational-expectation informed speculators and the simulation experiments

14In one of the robustness checks, Calvano et al. (2020) consider stochastic demand and show that the average ∆C is
lower when aggregate demand can take two values randomly. We also find that with stochastic vt, the average ∆C

declines because it is more difficult for Q-learning algorithms to learn strong punishment strategies. The decline in
∆C would be smaller if the evolution of vt exhibits a smaller degree of randomness, either through a higher level of
persistence or a less dispersed distribution.
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with informed AI speculators, the ratio σu/σv plays a crucial role in determining the level of
collusion.

The information asymmetry in our economic environment implies that peer informed AI
speculators’ lagged actions are unobservable and thus cannot be included as state variables.
Thus, as described in Section 4.1, we use the lagged asset’s price pt−1 as the state variable in
period t, rather than the lagged actions of the two informed AI speculators. Compared to our
baseline setting with state variables st = {pt−1, vt}, we also examine the settings with alternative
specifications of state variables. First, we consider a counterfactual setting with state variables
st = {xi,t−1, x−i,t−1, vt}. This setting essentially assumes that informed AI speculators’ can
perfectly observe peers’ order flows, which is close to the perfect-information setting of Calvano
et al. (2020) except for including vt as an additional state variable. Second, we consider the
setting where state variables are st = {pt−1, xi,t−1, vt}. We find that under the perfect information
benchmark (i.e., σu/σv = 0) with two informed AI speculators, these two alternative settings
have almost the same average ∆C. This is not surprising because under the perfect information
benchmark, recording xi,t−1 and pt−1 allows each informed AI speculator to exactly back out its
peer’s order flow x−i,t−1. However, with information asymmetry (i.e., σu/σv > 0), the first setting
with st = {xi,t−1, x−i,t−1, vt} yields a considerably higher average ∆C than the other setting with
st = {pt−1, xi,t−1, vt}. In addition, we find that the average ∆C in these two alternative settings
is higher than that in our baseline setting. Thus, incorporating informed AI speculators’ lagged
actions as additional state variables indeed helps informed AI speculators to learn collusive
strategies, likely through an improved learning of punishment strategies. However, lagged actions
are not a necessary ingredient because in both our model with rational-expectation informed
speculators and simulation experiments with informed AI speculators, including lagged price
pt−1 alone can already result in a significant degree of collusion.

5.2 Artificial Stupidity: Collusion through Homogenized Learning Biases

In this subsection, we study informed AI speculators’ learned optimal strategies when the
environment has low price efficiency but large noise trading risks (i.e., σu/σv = 102). Similar to
Section 5.1, the other parameters are set according to the baseline economic environment.

According to our model in Section 3, it is impossible for informed speculators to collude with
each other in environments with large noise trading risks. However, in our simulation experiments,
informed AI speculators can still achieve supra-competitive profits. Across N = 1, 000 simulation
sessions, the average value of ∆C is about 0.6 and the average profit of informed AI speculators
is about 7.5% higher than the profit in the noncollusive equilibrium. The profit becomes even
higher as noise trading risks further increase. Below, we examine the mechanism that leads to
such supra-competitive profits. We show that in line with our model’s prediction, informed AI
speculators do not learn price-trigger strategies to sustain collusion. Instead, they are able to
collude to achieve supra-competitive profits due to homogenized learning biases.

To begin with, we study the impulse responses to a unilateral deviation in Figure 6. Clearly,
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Note: The experiment is similar to those described for Figure 3, except for setting σu/σv = 102. The left three panels
consider a unilateral small deviation with deviation size ∆xi,t equal to one grid point in the order space X. The right
three panels consider a unilateral large deviation with ∆xi,t equal to three grid points in X.

Figure 6: IRF after a unilateral deviation (σu/σv = 102).

regardless of whether it is a small deviation (panels A to C) or a large deviation (panels D to
F), we do not see any punishment from the nondeviating speculator. Instead, panels A and D
of Figure 6 show that the nondeviating speculator’s order flow is virtually unchanged and the
deviating speculator returns to its learned optimal trading strategy immediately in period t = 4,
which is just one period after the deviation. Panels B and E of Figure 6 show that the deviating
speculator obtains an extra amount of one-period profit in period t = 3, which causes a one-period
profit loss for the nondeviating speculator. Because there is no punishment for t ≥ 4, the average
percentage gains from the deviation in terms of discounted profits is strictly positive for the
deviating speculator.
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5.2.1 Self-Confirming Equilibrium

The collusive outcomes achieved by the two informed AI speculators are clearly not generated
by price-trigger strategies when σu/σv is large, which is consistent with the prediction of our
model (Proposition 3.4). In fact, the collusive outcomes are achieved through homogenized
learning biases of informed AI speculators when noise trading risks are large. Although deviation
seems to be profitable in terms of increasing the discounted profits, both informed AI speculators
choose not to do this according to their learned optimal trading strategies after their Q-learning
algorithms converge. The reason is that informed AI speculators’ actions are governed by their
learned Q-matrix, which indicates that the (no-deviation) strategies they are playing are optimal
and any deviations cannot be profitable.

The steady-state behavior of informed AI speculators represents a self-confirming equilibrium,
a notion first introduced by Fudenberg and Levine (1993). Compared with the Nash equilibrium,
the self-confirming equilibrium is weaker because it allows players to have incorrect (or biased)
off-equilibrium beliefs. This equilibrium concept is motivated by the idea that noncooperative
equilibria should be interpreted as outcomes of a learning process, in which players form beliefs
based on their past experience. While beliefs can be generally correct along the equilibrium path
of play because it is frequently observed, beliefs are not necessarily correct off the equilibrium
path unless players engage in a sufficient amount of experimentation with non-optimal actions
(e.g., Fudenberg and Kreps, 1988, 1995; Cho and Sargent, 2008). Importantly, the incorrect off-
equilibrium beliefs are not inconsistent with the evidence (i.e., outcomes along the equilibrium
path). As noted by Fudenberg and Levine (1993), any self-confirming equilibrium can be a steady
state, especially, including those equilibria with outcomes that cannot arise in Nash equilibrium.
The self-confirming equilibrium allows completely arbitrary beliefs and supposes that players do
not think strategically like what they do in a rational expectations framework. Instead, players
choose actions based on what they have learned from their past experience.

In our simulations, informed AI speculators’ beliefs are summarized by their Q-matrices.
Specifically, the value of each state-action pair (s, x) in the Q-matrix represents the “perceived”
reward that the informed AI speculator can obtain by playing the action x ∈ X in the state
s ∈ S.15 In Appendix G.1, we show that the hyperparameter α, which determines the informed
AI speculator’s forgetting rate or memory capacity, plays a crucial role in determining the
magnitude of learning biases. Unbiased learning about the Q-matrix requires two conditions to
hold simultaneously: 1) the informed AI speculators have sufficiently experimented all possible off-
equilibrium plays before Q-learning algorithms converge, and 2) informed AI speculators’ memory
capacity is infinitely large, i.e., α → 0. As long as α > 0, the Q-matrix is learned with biases
due to the failure of the law of large numbers. Moreover, learning biases are larger when noise
trading risks are higher (i.e., higher σu/σv) or the forgetting rate α is higher. Intuitively, informed
AI speculators average past data to approximate the moments of the conditional probability

15As we show in Appendix G.1, when ρ = 0, the value of each state-action pair (s, x) in the Q-matrix is equal to the
sum of the discounted value of the profits (v − p)x received by the informed AI speculator when it played x in state s
in the past, with the discount rate being 1 − α.

45



distribution of interest. When the environment’s has higher noise trading risks or the forgetting
rate α is higher, informed AI speculators lack sufficient memory capacity to store and analyze past
data, and thus it becomes more difficult to approximate the moments of interest (i.e., the Q-matrix).
The magnitude of learning biases in turn will determine which self-confirming equilibrium would
emerge after Q-learning algorithms converge.

5.2.2 Biased Learning Leads to Self-Confirming Equilibrium with Supra-Competitive Profits

Having discussed that the steady state reached by informed AI speculators represents a self-
confirming equilibrium, we now further explain why informed AI speculators’ biased learning
leads to collusive rather than competitive outcomes.

The underlying logic involves the following four key steps. First, collusive outcomes are
achieved when informed AI speculators adopt more conservative, rather than more aggressive
trading strategies. Specifically, according to our model in Section 3, the sensitivities of informed
speculators’ order flow to the asset’s value vt in different equilibria satisfy χM ≤ χC < χN .
Because informed speculator i’s order xi,t is xi,t = χ(vt − v), its absolute value of order flow
satisfies |xM

i,t | ≤ |xC
i,t| < |xN

i,t| for any vt, indicating that collusion means that informed speculators
adopt more conservative (i.e., trading with smaller absolute value of order flow |xi,t|), rather than
more aggressive trading strategies.

Second, compared with more conservative trading strategies, when informed AI speculators
adopt more aggressive trading strategies, the unconditional variance of per-period profits is larger,
namely, the distribution of per-period profits is more dispersed. Specifically, in Appendix G.2,
we show that, for any state s, there exists complementarity between an informed AI speculator’s
order flow x and the noise order flow ut in determining per-period profits. This complementarity
implies that more aggressive trading strategies would amplify the impact of the noise order flow
ut, generating a more dispersed distribution of per-period profits compared to that generated by
more conservative trading strategies.

Third, if playing action x in state s generates a more dispersed distribution of per-period
profits, the resulting estimated Q value, Q̂t(s, x), for the state-action pair (s, x) also has a more
dispersed distribution over time. This is because at any point in time t, the estimated Q̂t(s, x) is
the sum of the discounted value of per-period profits that the informed AI speculator receives
when it visits the state-action pair (s, x) in the past.

Fourth, a necessary condition for all Q-learning algorithms to reach stationary optimal strate-
gies is that exploration rate is virtually zero, and informed AI speculators are purely in the
exploitation mode. However, because of exploitation, for any state s, the action x that generates
a more dispersed distribution of Q̂t(s, x) over time is less likely to be adopted by informed AI
speculators after their Q-learning algorithms converge. Specifically, relative to playing conser-
vative actions, playing an aggressive action (denoted by x∗), generates a dispersed distribution
of Q̂t(s, x∗) over time. This means that an aggressive action x∗ is likely to generate both a high
Q̂t(s, x∗) and a low Q̂t(s, x∗). In one case, suppose a sequence of unfavorable noise order flows
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were realized when the informed AI speculator was playing x∗ in state s, so that a low Q̂t(s, x∗)
is estimated for x∗. Then, x∗ will not be played when the informed AI speculator conducts
exploitation in state s in the future, because this action obviously does not maximize its Q value.
In the other case, suppose a sequence of favorable noise order flows were realized when the
informed AI speculator was playing x∗ in state s, so that a high Q̂t(s, x∗) is estimated for x∗. Then,
x∗ will be further “exploited” in future periods. Because x∗ generates a more dispersed Q̂t(s, x∗),
it is highly likely that, eventually, the estimated Q̂t(s, x∗) will be small. From this point on, like
the first case, the informed AI speculator will not play x∗ when conducting future exploitation in
state s. Thus, in the process of reaching convergence, the informed AI speculator’s exploitation
has the tendency to not adopt the trading strategies that can possibly generate large negative
Q values, which are aggressive trading strategies that generate a more dispersed distribution of
per-period profits. In some sense, informed AI speculators exhibit a certain degree of aversion to
risks in the exploitation mode.

Taking the above four steps together, informed AI speculators’ biased learning leads them to
adopt more conservative trading strategies after their Q-learning algorithms converge, resulting
in collusive outcomes.

5.2.3 Homogenized Bias and Implicit Coordination

We have explained how informed AI speculators’ learning biases and exploitation lead to a
self-confirming equilibrium that features collusive outcomes. However, it remains unclear why
informed AI speculators adopt highly similar trading strategies after their Q-learning algorithms
converge. What is the fundamental force that generates this sort of implicit coordination? We
find that the key reason is that informed AI speculators rely on the same foundational model in
their learning process. This generates homogenized learning biases, eventually leading to implicit
coordination.

To elaborate, first consider the economic environment represented by the trough point of the
blue solid line in panel A of Figure 7, i.e., log(σu/σv) = 2. This represents an environment with
high price inefficiency but relatively low noise trading risks in the sense that learning biases are
small for informed AI speculators. However, noise trading risks are large enough to rule out the
existence of a collusive equilibrium sustained by price-trigger strategies. Because learning biases
are small in this environment, informed AI speculators are able to learn to play a noncollusive
Nash equilibrium after their Q-learning algorithms converge, resulting in an average ∆C ≈ 0.
Implicit coordination in this environment is achieved because both informed AI speculators adopt
similar noncollusive trading strategies in the Nash equilibrium.

Next, suppose that noise trading risks in the economic environment become higher, all else
equal, both informed AI speculators become more biased in their learning processes. This leads
both of them to optimally choose more conservative trading strategies after their Q-learning
algorithms converge. Because both informed AI speculators adopt the same Q-learning algorithm
with the same forgetting rate α, the magnitudes of their learning biases are similar. Thus, they
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also become more conservative at a similar pace, resulting in similar optimal trading strategies
after their Q-learning algorithms converge, as if they are implicitly coordinating with each other.
The homogenized bias in informed AI speculators’ Q-learning algorithms allows them to attain
similar levels of supra-competitive profits. The extent to which informed AI speculators are biased
homogeneously determines the implicitly coordinated level of profits. Importantly, as noted above,
the two informed AI speculators reach a self-confirming equilibrium in which no one will deviate,
because their biased beliefs, as recorded in their learned Q-matrices, suggest that any deviation
cannot be profitable.

By contrast, if the two informed AI speculators’ learning processes are not governed by the
same foundational model, the learning biases will not be homogeneized. As a result, the two
informed AI speculators may not be able to simultaneously attain supra-competitive profits. As
an illustrative example, in panel B of Figure 15, we consider an experiment in which one informed
AI speculator adopts a more advanced algorithm than the other, as captured by a lower forgetting
rate α. We find that the more advanced informed AI speculator is able to attain much higher
profits than in the experiment with two informed AI speculators adopting the same α. However,
the average profit of the less advanced informed AI speculator is much lower and similar to
the profit in the noncollusive Nash equilibrium. In about half of the 1, 000 simulation sessions,
the profits of the less advanced informed AI speculator are even lower than the profit in the
noncollusive Nash equilibrium. This experiment highlights the importance of homogenized bias
in generating implicit coordination and supra-competitive profits for all informed AI speculators.
Further, in Section 7.2, we extend the Q-learning algorithm to a two-tier Q-learning algorithm
in which informed AI speculators learn both the optimal choice of the forgetting rate α and the
optimal trading strategies corresponding to the choice of α. Interestingly, we find that informed
AI speculators will learn to coordinately adopt high values of α in the stationary equilibrium, and
such coordination allows both of them to obtain supra-competitive profits through homogenized
learning baises.

5.2.4 Determinants of the Magnitude of Learning Biases

The extent to which learning is biased determines which self-confirming equilibrium would
emerge after Q-learning algorithms converge, which consequently determines the average profits
of informed AI speculators. Specifically, the above mechanism is stronger when informed AI
speculators’ Q-matrices are estimated with larger biases. Thus, the extent to which informed AI
speculators collude to attain supra-competitive outcomes increases with the magnitude of learning
biases. We now discuss the determinants of the magnitude of learning biases.

As noted in Section 5.2.1, learning biases are larger in environments with higher noise trading
risks (i.e., higher σu/σv) or when informed AI speculators have a higher forgetting rate α. In
equation (G.6) in Appendix G.1, we formally show that the magnitude of learning biases increases
when σu/σv is higher, λ is higher, ρ is lower, or α is higher. These properties behind Q-learning
algorithms predict that informed AI speculators can attain higher supra-competitive profits due
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to biased learning when σu/σv is higher, λ is higher, ρ is lower, or α is higher. Consistent these
predictions, first, we show that the average ∆C across N = 1, 000 simulation sessions increases
with σu/σv in the region with high noise trading risks (i.e., log(σu/σv) ≥ 2) in panel A of Figure
7. Second, we show that in the environment with high noise trading risks (e.g., log(σu/σv) = 2),
reducing ξ from 500 to 1 (which results in a larger λ and higher price efficiency) leads to a higher
average ∆C in panel B of Figure 7. Third, we show that in the environment with high noise trading
risks, reducing the value of ρ leads to a higher average ∆C in Figure 13. Finally, we show that in
the environment with high noise trading risks, a higher α would result in a higher average ∆C in
panel B of Figure 14.

5.3 Role of Noise Trading Risks and Price Efficiency

In this subsection, we study the role of noise trading risk and price efficiency in generating
collusive outcomes for informed AI speculators.

5.3.1 Role of Noise Trading Risks

Consider the baseline economic environment described in Section 4.7. In panel A of Figure 7,
we plot the average ∆C as log(σu/σv) varies from −5 to 5 along the x-axis. The black dotted and
red dash-dotted lines represent the theoretical benchmarks (∆M = 1 and ∆N = 0) in the perfect
cartel and noncollusive Nash equilibrium, respectively. The blue solid line plots the average ∆C

across N = 1, 000 simulation sessions, holding all other parameters unchanged. It shows that
as log(σu/σv) increases along the x-axis, the average ∆C first decreases and then increases. This
U-shape pattern is an outcome of the interaction of the two mechanisms discussed in Sections 5.1
and 5.2. Specifically, in the region of low noise trading risks, i.e., log(σu/σv) < 2, the average ∆C

is decreasing in log(σu/σv). In this region, informed AI speculators learn price-trigger strategies
to sustain collusion and attain supra-competitive profits, as discussed in Section 5.1. The negative
relationship between the average ∆C and log(σu/σv) observed in our simulation experiments is
consistent with the prediction of our model (see Proposition 3.6.(ii)).

In the region of large noise trading risks, i.e., log(σu/σv) ≥ 2, the average ∆C is increasing
in log(σu/σv). In this region, informed AI speculators attain supra-competitive profits because
of homogenized learning biases, as discussed in Section 5.2. The positive relationship between
the average ∆C and log(σu/σv) observed in our simulation experiments is consistent with the
theoretical property that biased learning becomes more significant when log(σu/σv) increases (see
Section 5.2.4).

5.3.2 Role of Price Efficiency

According to our model in Section 3, the market maker focuses more on minimizing pricing errors
when ξ is small or θ is large. In this case, price efficiency is high and there does not exists collusive
Nash equilibrium sustained by price-trigger strategies for any σu/σv > 0 (Proposition 3.3). By
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Figure 7: ∆C and πC/πN for log(σu/σv) ∈ [−5, 5] and ξ = 500, 100, 30, 1.

contrast, when ξ is large or θ is small, the market maker focuses more on minimizing inventory
costs. In this case, price efficiency is low and there exists a collusive Nash equilibrium that can be
sustained by price-trigger strategies for small σu/σv and I (Proposition 3.4).

By varying the value of ξ in our simulation experiments, we study how price efficiency affects
informed AI speculators’ trading profits.16 Specifically, the four curves in panel B of Figure 7
represent the experiments with ξ = 500, 100, 30 and 1. The overall U-shaped relationship between
the average ∆C and log(σu/σv) is not peculiar to the choice of ξ. All four curves display U-shape
patterns. Panel C of Figure 7 plots the profit gain relative to noncollusion (πC/πN), the pattern is
similar to that in panel A.

As we compare the four curves in panel B of Figure 7, one salient feature is that the trough
of the U-shape shifts to the left as ξ decreases. This suggests that with a smaller ξ, a lower level
of noise trading risks is necessary for informed AI speculators to learn price-trigger strategies
to collude. A similar point can be made if we focus on the region with low noise trading risks,
in which price-trigger strategies are learned by informed AI speculators. For example, holding
ln(σu/σv) = −4 unchanged, it is clear that the average ∆C declines monotonically as ξ decreases
from 500 to 1. Thus, collusion becomes more difficult to achieve through price-trigger strategies
as ξ decreases, as predicted by our model (see Proposition 3.6.(iv)). By contrast, the relationship
between ξ and average ∆C is opposite if we focus on the region with large noise trading risks, in
which informed AI speculators’ trading strategies are dominantly affected by learning biases. For
example, holding ln(σu/σv) = 2 unchanged, it is clear that the average ∆C increases monotonically
as ξ decreases from 500 to 1. This is consistent with the theoretical property of biased learning
discussed in Section 5.2.4, that is, the magnitude of learning biases increases with λ (i.e., decreases
with ξ). Thus, a lower ξ leads to larger learning biases, allowing informed AI speculators to

16We do not conduct experiments with different θ because a smaller θ has similar impacts as a larger ξ on price
efficiency.
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achieve higher supra-competitive profits.

5.4 Trading Strategy of Informed AI Speculators

In this subsection, we illustrate informed AI speculators’ trading strategies in the baseline economic
environment described in Section 4.7.

In panel A of Figure 8, we plot the average sensitivity of informed AI speculators’ order to
the asset’s value, χ̂C, across N = 1, 000 simulation sessions as a function of the noise trading risk
log(σu/σv). Consistent with panel A of Figure 7, χ̂C displays an inverted U-shape as log(σu/σv)

increases along the x-axis. By contrast, the theoretical benchmarks χN and χM stay roughly
unchanged as log(σu/σv) increases.

In fact, the estimated χ̂C almost sufficiently describes informed AI speculators’ trading strategy
because their orders are almost linear in the assets’s value, a property that holds both in the model
and the simulation experiments. As an illustration, in panels B and C of Figure 8, we present
the average trading strategy of informed AI speculators across N = 1, 000 simulation sessions.
Panel B is for the environment with low noise trading risks (σu/σv = 10−1) and panel C is for the
environment with high noise trading risks (σu/σv = 102). The trading strategy in each simulation
session is calculated as x(vk) = 1

Inp
∑I

i=1 ∑
np
m=1 xi(pm, vk), which is the average order flow of I

informed AI speculators across all grid points of P, after Q-learning algorithms converge. The
dots on the blue solid lines represent the average order flow corresponding to the discrete grid
points of V. The black dotted and red dash-dotted lines represent the theoretical benchmarks,
χM(vk − v) and χN(vk − v), in the perfect cartel equilibrium and noncollusive Nash equilibrium,
respectively.

It is clear that informed AI speculators learn an optimal trading strategy that is roughly linear
in the asset’s value after their Q-learning algorithms converge, even though the linearity restriction
is not imposed during the learning process. Moreover, the slope of a linear fit for the trading
strategy of informed AI speculators, i.e., χ̂C, lies between χM and χN in both panels B and C of
Figure 8. Thus, the trading strategy learned by informed AI speculators is more conservatively
than that in the noncollusive Nash equilibrium, which explains why informed AI speculators are
able to attain supra-competitive profits.

5.5 Price Informativeness, Market Liquidity, and Mispricing

In this subsection, we study the impacts of AI collusion for price informativeness, market
liquidity, and mispricing in financial markets. We show that AI collusion leads to lower price
informativeness, lower market liquidity, and higher mispricing. The magnitude of such effects
depends on the extent to which informed AI speculators collude with each other, which is largely
determined by the noise trading risk σu/σv.

Panel A of Figure 9 plots the market’s price informativeness relative to the theoretical bench-
mark of the perfect cartel equilibrium. By definition, the black dotted line shows that the relative
price informativeness in the perfect cartel equilibrium is IM/IM ≡ 1. The red dash-dotted line
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of I informed AI speculators across all grid points of P, after Q-learning algorithms converge. The dots on the blue
solid lines represent the average order flow corresponding to the discrete grid points of V. Panels A and B focus on the
environments with low (σu/σv = 10−1) and high (σu/σv = 102) noise trading risks, respectively. The other parameters
are set according to the baseline economic environment described in Section 4.7.

Figure 8: The trading strategy of informed AI speculators.

shows that the ratio of price informativeness in the theoretical benchmark of the noncollusive
Nash equilibrium and perfect cartel equilibrium, IN/IM, is greater than 1 and increasing in
log(σu/σv).17 The blue solid line plots the average relative price informativeness, IC/IM, across
N = 1, 000 simulation sessions with informed AI speculators. Its value is close to the relative price
informativeness in the theoretical benchmark of the non-collusive equilibrium when log(σu/σv) is
around 2 due to the lack of collusion. When log(σu/σv) is very small or very large, the relative
price informativeness in our simulation experiments with informed AI speculators is significantly
lower than that in the theoretical benchmark of the noncollusive Nash equilibrium. The reason
is that informed AI speculators place orders in a more conservative manner, with χ̂C < χN , as
shown in panel A of Figure 8.

Our findings suggest that perfect price informativeness is not achievable in the presence of
informed AI speculators. In our simulation environments, when the noise trading risk σu/σv

decreases, informed AI speculators would withhold their private information about the asset’s
value and collude more through price-trigger strategies, placing orders more conservatively than
what they would do in the noncollusive Nash equilibrium. This AI collusion reduces price
informativeness. Crucially, informed AI speculators never need to communicate with each other,
whether explicitly or implicitly, the adoption of Q-learning algorithms automatically leads to such
collusive behavior.

Panel B of Figure 9 plots the market liquidity relative to the theoretical benchmark of the
perfect cartel equilibrium. The red dash-dotted line shows that the ratio of market liquidity in

17This is because χ̂N > χ̂M for all log(σu/σv). Moreover, when ξ = 500, χ̂N and χ̂M are roughly unchanged (only
slightly increase) as log(σu/σv) increases. Then, according to the equation (4.10), both IN and IM are decreasing in
log(σu/σv), but the ratio IN/IM is increasing in log(σu/σv).
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Figure 9: Price informativeness, market liquidity, and mispricing for log(σu/σv) ∈ [−5, 5].

the theoretical benchmark of the noncollusive Nash equilibrium and perfect cartel equilibrium,
LN/LM is greater than 1 and decreasing in log(σu/σv).18 The blue solid line shows that the
market liquidity in our simulation experiments with informed AI speculators is higher than that in
the theoretical benchmark of the perfect cartel equilibrium and lower than that of the noncollusive
equilibrium. The blue solid line displays an U shape similar to panel A of Figure 8, indicating
that the market liquidity is closer to the theoretical benchmark of the perfect cartel equilibrium if
there is more AI collusion.

Panel C of Figure 9 plots the magnitude of mispricing in financial markets. Mispricing is
higher in the theoretical benchmark of the perfect cartel equilibrium (the black dotted line) than
in the noncollusive equilibrium (the red dash-dotted line). The blue solid line shows that AI
collusion increases mispricing, and the magnitude is larger when there is a higher degree of
collusion among informed AI speculators.

6 Further Inspection of Model Ingredients

In this section, we further inspect several key parameters in our simulation experiments. In
Subsection 6.1, we study how the number of informed AI speculators affects their trading
strategies. In Subsection 6.2, we study the implication of informed AI speculators’ subjective
discount rates. Finally, in Subsection 6.3, we study the impacts of hyperparameters α and β on
informed AI speculators’ learning outcomes.

18This is because λN < λM for all log(σu/σv). Intuitively, in the perfect cartel equilibrium, the market maker knows
that informed speculators submit orders jointly like a monopoly, and thus the market maker adopts a pricing rule
that is more responsive to the combined order flow of informed speculators and the noise trader, i.e., γN < γM. As
log(σu/σv) increases, both λN and λM decline, so that market liquidity defined by equation (4.11) increases.
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Note: The blue solid line plots the average values of ∆C, IC/IM, LC/LM, and EC across N = 1, 000 simulation
sessions as the number of informed AI speculators I varies, in the environment with low noise trading risks, i.e.,
σu/σv = 10−1. The red dash-dotted and black dotted lines represent the theoretical benchmarks of the noncollusive
Nash equilibrium and perfect cartel equilibrium, respectively. The other parameters are set according to the baseline
economic environment described in Section 4.7.

Figure 10: Implications of the number of informed AI speculators (σu/σv = 10−1).

6.1 Number of Informed AI Speculators I

Our model in Section 3 predicts that in the environment with low price efficiency (i.e., ξ is large
or θ is small) and low noise trading risks (i.e., small σu/σv), informed speculators are less able to
collude through price-trigger strategies when the number of informed speculators increases (see
Proposition 3.6.(i)). In the simulation experiments with informed AI speculators, we find similar
patterns. Specifically, consider the baseline economic environment described in Section 4.7. In
Figure 10, we conduct simulation experiments in the environment with low noise trading risks
(σu/σv = 10−1). Panel A shows that as the number of informed AI speculators I increases from
2 to 4, the average ∆C decreases from 0.74 to 0.56, indicating a decline in the extent of collusion
among informed AI speculators. Moreover, panels B to D show that as I increases, the relative
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Figure 11: Implications of the number of informed AI speculators (σu/σv = 102).

price informativeness IC/IM and market liquidity LC/LM increase whereas the magnitude of
mispricing EC decreases.

For comparisons, in Figure 11, we conduct simulation experiments in the environment with
high noise trading risks (σu/σv = 102). In these experiments, informed AI speculators collude
through homogenized learning biases, as discussed in Subsection 5.2. The implications of I for
informed AI speculators’ strategies are similar to the experiments with low noise trading risks.
Specifically, panel A shows that as I increases from 2 to 4, the average ∆C decreases from 0.62 to
0.39. These results suggest that the coordination through homogenized learning biases becomes
more difficult to achieve when there are more informed AI speculators in the market. Intuitively,
the equilibrium degree of collusion is determined by the interaction of two counterveiling forces.
One is the magnitude of learning biases, which is the mechanism that generates collusion. The
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other is the deviation gain from the self-confirming collusive equilibrium. A larger deviation gain
makes it more difficult for informed AI speculators to reach the collusive equilibrium because
in the process of exploration (which, in essence, generates deviation behavior), these speculators
will more likely learn to play noncollusive actions despite the existence of learning biases. As the
number of informed AI speculators I increases, the deviation gain from the equilibrium trading
strategies becomes larger, but the magnitude of learning biases remain unchanged.19 Therefore,
as I increases, collusion becomes more difficult and ∆C declines.

Panels B to D show that as I increases, the relative price informativeness IC/IM and market
liquidity LC/LM increase whereas the magnitude of mispricing EC decreases.

6.2 Subjective Discount Rate ρ

Our model in Section 3 predicts that in the environment with low price efficiency (i.e., ξ is large
or θ is small) and low noise trading risks (i.e., small σu/σv), informed speculators are able to
collude on higher profits through price-trigger strategies as the subjective discount rate ρ increases
(see Proposition 3.6.(iii)). In the simulation experiments with informed AI speculators, we find
similar patterns. Specifically, consider the baseline economic environment described in Section
4.7. In Figure 12, we conduct simulation experiments in the environment with low noise trading
risks (σu/σv = 10−1). Panel A shows that as ρ increases from 0.5 to 0.95, the average ∆C increases
from 0.29 to 0.74, indicating an increase in the extent of collusion among informed AI speculators.
Moreover, panels B to D show that as ρ increases, the relative price informativeness IC/IM and
market liquidity LC/LM decline whereas the magnitude of mispricing EC increases.

Turning to the environment with high noise trading risks, the theoretical properties discussed
in Section 5.2.4 indicate that as the subjective discount rate ρ increases, the magnitude of learning
biases declines, and as a result, informed AI speculators would find it more difficult to collude.
The patterns observed in our simulation experiments are consistent with this prediction. In
particular, in Figure 13, we conduct simulation experiments in the environment with high noise
trading risks (σu/σv = 102). Panel A shows that as ρ increases from 0.5 to 0.95, the average
∆C decreases from 0.76 to 0.62. Moreover, panels B to D show that as ρ increases, the relative
price informativeness IC/IM and market liquidity LC/LM increase whereas the magnitude of
mispricing EC declines.

6.3 Hyperparameters α and β

In this subsection, we study how the hyperparameters α and β affect informed AI speculators’
profits in equilibrium. Similar to the baseline economic environment, we consider informed AI
speculators adopting the same values of α and β. In panel A of Figure 14, we plot the average ∆C

in the environment with low noise trading risks (σu/σv = 10−1) for different values of α and β.

19When I increases, individual informed AI speculators trading flows xi decrease. However, in equation (G.6), the
trading flow xi proportionally affects every term. Thus, the decrease in xi does not affect the importance of the term
αλxi ∑T

τ=0(1 − α)τut(T−τ), which causes learning biases, relative to other terms in equation (G.6). This is why the
magnitude of learning biases does not depend on I.
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Note: The blue solid line plots the average values of ∆C, IC/IM, LC/LM, and EC across N = 1, 000 simulation sessions
as the subjective discount rate ρ varies, in the environment with low noise trading risks, i.e., σu/σv = 10−1. The red
dash-dotted and black dotted lines represent the theoretical benchmarks of the noncollusive Nash equilibrium and
perfect cartel equilibrium, respectively. The other parameters are set according to the baseline economic environment
described in Section 4.7.

Figure 12: Implications of the subjective discount rate (σu/σv = 10−1).

As discussed in Subsection 5.1, informed AI speculators need to conduct sufficient explorations
to learn punishment strategies, which is achieved by setting a sufficiently low β. Indeed, when
β = 10−6, the red bars in panel A of Figure 14 show that informed AI speculators can easily
achieve a very high value of ∆C = 0.90 (corresponding to α = 0.001) whereas when β = 10−3,
the yellow bars show that informed AI speculators can only achieve a low value of ∆C = 0.40
(corresponding to α = 0.1).

Panel A of Figure 14 further shows that, to achieve the best collusive outcomes, the values of α

and β have to be jointly determined. That is, the choice of a smaller β needs to be matched with a
smaller α, and conversely, the choice of a larger β needs to be matched with a larger α. Intuitively,
setting a small β ensures that informed AI speculators will spend a long time in the exploration
mode in which they randomly choose different actions, resulting in extensive experimentation.
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sessions as the subjective discount rate ρ varies, in the environment with high noise trading risks, i.e., σu/σv = 102. The
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Figure 13: Implications of the subjective discount rate (σu/σv = 102).

Then, setting a small α is necessary to record the value learned in the past whereas setting a large
α will disrupt learning as the algorithm would forget what it has learned in the past too rapidly.
By contrast, setting a large β means that informed AI speculators only spend a short period
of time in the exploration mode. Then, if we still set a small α, the Q-matrices of informed AI
speculators would not be updated significantly until the algorithms complete exploration. Thus,
when β is large, setting a small α would backfire, making the initial exploration futile. Instead,
setting a large α in this case would help informed AI speculators to learn punishment strategies
to achieve more collusive outcomes.

In panel B of Figure 14, we plot the average ∆C in the environment with high noise trading
risks (σu/σv = 102) for different values of α and β. Holding β unchanged at each value of {10−6,
10−5, 10−4, 10−3}, panel B shows that the value of ∆C declines monotonically as α decreases. This
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Note: Panel A plots ∆C in the environment with low noise trading risks (σu/σv = 10−1); panel B plots ∆C in the
environment with high noise trading risks (σu/σv = 102). The other parameters are set according to the baseline
economic environment described in Section 4.7.

Figure 14: Implications of hyperparameters α and β on ∆C.

is because when noise trading risks are large, the supra-competitive profits are attained because
informed AI speculators have homogenized learning biases. As discussed in Section 5.2.4, the
learning biases due to the failure of the law of large numbers are mitigated when α becomes small.

Taken together, a key feature that distinguishes collusion through price-trigger strategies
(panel A of Figure 14) and collusion through homogenized learning biases (panel B of Figure 14)
is whether improved learning through setting a sufficiently small α would significantly reduce the
supra-competitive profits of informed AI speculators.

7 Coordinated Choice of Q-Learning Algorithms

As shown in panel B of Figure 14, setting a lower forgetting rate α reduces the magnitude of
learning biases but it takes longer time and more computation power to train the algorithm. Thus,
we can think of α as capturing the “intelligence level” of the algorithm: the algorithm is more
advanced if it has a lower α.

In this section, we focus on the environment with high noise trading risks and allow informed
AI speculators to choose different values of the hyperparameter α for their Q-learning algorithms.
We evaluate the implications for trading profits. Specifically, in Subsection 7.1, we show that the
more advanced algorithm will make more profit than the less advanced algorithm. Moreover,
given the peer’s choice of α, by setting a lower α, the informed AI speculator can increase its
own profit. However, importantly, both informed AI speculators can obtain supra-competitive
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profits if they both adopt less advanced algorithms with similar learning biases. In Subsection
7.2, we extend the Q-learning algorithm to a two-tier Q-learning algorithm in which informed
AI speculators learn both the optimal choice of the forgetting rate α and the optimal trading
strategies associated with the choice of α. We show that informed AI speculators will learn to
adopt high values of α in the stationary equilibrium, and such coordination allows both of them
to obtain supra-competitive profits.

7.1 Homogenized Learning Biases

Focusing on the baseline economic environment with two informed AI speculators, as described
in Section 4.7 except for setting σu/σv = 102, representing an environment with high noise trading
risks. We allow the two informed AI speculators to adopt different values of α, but the same value
of β. Intuitively, the informed AI speculator adopting a more advanced Q-learning algorithm (i.e.,
a lower α) would have smaller learning biases than the one adopting a less advanced algorithm
(i.e., a higher α). As discussed in Subsection 5.2.4, learning biases induce informed AI speculators
to adopt more conservative trading strategies, i.e., smaller order flows. Therefore, the informed AI
speculator with a less advanced algorithm would adopt a more conservative trading strategy than
the one with a more advanced algorithm. This essentially enables the informed AI speculator with
a more advanced algorithm to take advantage of the other informed AI speculator and obtain
more profits than what it would obtain when the other speculator adopts an algorithm with the
same α. Conversely, the informed AI speculator with a less advanced algorithm would obtain less
profits than what it would obtain when the other speculator adopts an algorithm with the same α.

The results of our simulation experiments are consistent with the above intuition. In Figure
15, we allow each informed AI speculator i to adopt algorithms with different values of αi,
with αi = 0.001, 0.01, 0.05 and 0.1 for i = 1, 2. Panels A and B plot the average ∆C

1 and ∆C
2 for

informed AI speculators 1 and 2, respectively. It is shown that for any combination of (α1, α2), the
informed AI speculator with a lower αi attains a higher average ∆C

i than the other informed AI
speculator. Moreover, holding α1 unchanged at each value of {0.001, 0.01, 0.05, 0.1}, as informed
AI speculator 2’s α2 decreases, the average ∆C

1 for informed AI speculator 1 decreases and the
average ∆C

2 for informed AI speculator 2 increases. Similarly, holding α2 unchanged at each value
of {0.001, 0.01, 0.05, 0.1}, as informed AI speculator 1’s α1 decreases, the average ∆C

2 for informed
AI speculator 2 decreases and the average ∆C

1 for informed AI speculator 1 increases.
Our results indicate that both informed AI speculators can obtain supra-competitive profits if

both of them adopt less advanced algorithms with a high value of α. Holding one informed AI
speculator’s algorithm unchanged, the other speculator could increase its profit by adopting a
more advanced algorithm with a lower value of α, and at the same time, the profit of the speculator
with a less advanced algorithm would decrease. However, if both informed AI speculators adopt
advanced algorithms with a small value of α, the profit for both of them will decrease relative to
the equilibrium where both speculators adopt unadvanced algorithms. The results we observe bear
similarity to the general equilibrium effects in active management, as characterized by Stambaugh
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Note: We allow the two informed AI speculators to adopt Q-learning algorithms with different values of the forgetting
rate, denoted by α1 and α2 for informed AI speculators 1 and 2, respectively. Panels A and B plot ∆C

1 and ∆C
2 in the

environment with high noise trading risks (σu/σv = 102). The other parameters are set according to the baseline
economic environment described in Section 4.7.

Figure 15: Profit gain when informed AI speculators adopt algorithms with different values of α.

(2020). According to his model, if all managers lack the ability to select positive-alpha stocks,
they can collectively achieve high profits. When a small fraction of managers gains more skill,
it results in increased profits for the skilled ones, while the less skilled managers see a decline
in their profits. However, if a large proportion of managers becomes more skilled, the profits
for all managers start to diminish. This decline is due to a shrinking alpha magnitude, caused
by more substantial price corrections in general equilibrium. Interestingly, the total profit of the
active management industry typically decreases whenever any of the managers become more
skilled. In a recent work, Dugast and Foucault (2024) derive a similar result by showing that
improvements in the skills of active asset managers, due to lower information processing costs or
the proliferation of new datasets, can reduce their average performance as asset prices become
more informative.

7.2 Adaptive Forgetting Rates

In practice, the forgetting rate α is not necessarily fixed throughout the simulation experiments.
Instead, many Q-learning algorithms are implemented with adaptive forgetting rates, which are
adjusted dynamically in response to the performance of the model. In this subsection, we show
that informed AI speculators can learn to coordinately choose high values of α in environments
with high noise trading risks, despite the fact that choosing a low forgetting rate unilaterally may
boost self-profit. This result implies that an equilibrium with unadvanced algorithms (i.e., high α)
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may arise endogenously due to the optimal decisions of informed AI speculators.

Two-Tier Q-Learning Algorithm. Each informed AI speculator i adopts a two-tier Q-learning
algorithm. In the lower tier, the informed AI speculator adopts a Q-learning algorithm to learn
the lower-tier Q-matrix Q̂i,t(st, xi,t) for state st = {pt−1, vt} and order flow xi,t, given the choice of
αi,t in the upper tier. The lower-tier Q-learning algorithm is identical to the algorithm described
in Section 4.1, except for the use of a time-varying adaptive forgetting rate αi,t. In the upper
tier, the informed AI speculator adopts a Q-learning algorithm to learn the upper-tier Q-matrix
Q̂u

i,t(s
u
i,t, αi,t) for state su

i,t and action αi,t.
For any given choice of αi,t in the upper tier, it is necessary to ensure that the lower tier

Q-learning algorithm is run for a sufficiently long period of time, so that the profits corresponding
to the choice of αi,t fully stablize. This means that compared with the choice of xi,t in the lower tier,
the choice of αi,t in the upper tier has to be experimented at a much lower frequency. Therefore,
we specify that each informed AI speculator i adjusts its upper tier’s action αi,t only after the
lower tier finishes a training epoch that lasts for a total of T periods, with T being a large integer.

Specifically, let τ = 1, 2, ... denote all training epochs of the lower-tier Q-learning algorithm.
The training epoch τ represents the period from (τ − 1)T + 1 to τT. Within each training epoch
τ, each informed AI speculator i’s upper-tier Q-matrix Q̂u

i,t(s
u
i,t, αi,t) or action αi,t stay unchanged

from period (τ − 1)T + 1 to period τT − 1; the values of Q̂u
i,t(s

u
i,t, αi,t) and action αi,t are updated

only at the end of the training epoch, occurring at t = τT. Therefore, without loss of generality,
we only need to specify the recursive learning equation of the upper-tier Q-learning algorithm at
the end of each period, t = τT, as follows:

Q̂u
i,(τ+1)T(s

u
i,τT, αi,τT) = (1 − αu)Q̂u

i,τT(s
u
i,τT, αi,τT) + αu

[
πu

i,τT + ρu max
α′∈A

Q̂u
i,τT(s

u
i,(τ+1)T, α′)

]
, (7.1)

for τ = 1, 2, ... In equation (7.1), πu
i,τ is the reward in the training epoch τ, given by πu

i,τT =
1
T ∑τT

t=(τ−1)T+1(vt − pt)xi,t, which is the average trading profit over the last T periods, from period
(τ − 1)T + 1 to period τT. The parameters αu and ρu are the forgetting rate and the subjective
discount rate for the upper tier Q-learning algorithm. For tractability, we choose the state variable
su

i,τT = {πu
i,(τ−1)T}, which is the reward in the previous training epoch. The choice of αi,τT is

chosen as follows:

αi,τT =

{
argmaxα′∈A Q̂h

i,τT(s
u
i,τT, α′), with prob. 1 − εu

τ, (exploitation)
α̃ ∼ uniform distribution on A, with prob. εu

τ. (exploration)
(7.2)

The exploration rate is specified as ετ = e−βuτ, where βu is a parameter governing the decaying
speed of exploration rates across training epochs.

Simulation Results. The two-tier Q-learning algorithm takes a substantially longer time to
converge because there are experimentations on both αi,t and xi,t. We consider the following
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parameter values: αu = 0.1, βu = 10−4, and ρu = 0.95. Each training epoch has a total of
T = 10, 000, 000 periods. The convergence criterion requires the decisions of αi,t to stay unchanged
for 100, 000 consecutive training epochs. For tractability, we choose three grids for the choice of
αi,t, with A = {0.001, 0.01, 0.1}. The parameters and grids for the lower-tier Q-learning algorithm
are similar to those described in Section 4. In particular, there are two informed AI speculators.
We separately conduct N = 1, 000 independent simulations for the environments with high and
low noise trading risks.

Our primary focus is on the environment with high noise trading risks (i.e., σu/σv = 102). As
shown in panel B of Figure 15, the two informed AI speculators encounter a problem resembling
the prisoner’s dilemma. Specifically, given informed AI speculator i’s choice of αi, informed AI
speculator j can gain by adopting the smallest αj = 0.001. However, both informed AI speculators
would not make much profit if they reach the Nash equilibrium of (α1, α2) = (0.001, 0.001). Instead,
both of them would attain supra-competitive profits by coordinately reaching the equilibrium
with (α1, α2) = (0.01, 0.01) or (α1, α2) = (0.1, 0.1), that is, by adopting unadvanced algorithms to
trade. In theory, these two equilibria with high values of α can only be sustained in a repeated
game. Turning to our simulation experiments with informed AI speculators adopting the two-tier
Q-learning algorithms, we find that across the N = 1, 000 simulations sessions, 272 sessions
converge to the equilibrium with (α1, α2) = (0.1, 0.1), and 710 sessions converge to the equilibrium
with (α1, α2) = (0.01, 0.01). There does not exist a single simulation session that converges to the
equilibrium with (α1, α2) = (0.001, 0.001), even though this is the unique Nash equilibrium in a
one-shot game. Our results indicate that in the environment with high noise trading risks, the
two informed AI speculators are able to learn to adopt less advanced algorithms, which have high
values of α, in the stationary equilibrium. This coordination allows both AI speculators to obtain
supra-competitive profits.

For comparisons, we also conduct simulation experiments in the environment with low noise
trading risks (i.e., σu/σv = 10−1). As shown in panel A of Figure 14, the optimal outcome
is achieved if the two informed AI speculators choose to play the equilibrium with (α1, α2) =

(0.01, 0.01), given that β = 10−5. We find that across the N = 1, 000 simulations sessions, 957
sessions converge to this equilibrium. This suggests that our simple two-tier Q-learning algorithm
enables the two informed AI speculators to learn to play the optimal equilibrium. The algorithm’s
excellent performance is due to the fact that in this environment, informed AI speculators do not
face a prisoner’s dilemma problem. That is, the equilibrium with (α1, α2) = (0.01, 0.01), which
yields the highest trading profits for both informed AI speculators, is also the Nash equilibrium
of a one-shot game. In other words, choosing the forgetting rate αi = 0.01 maximizes informed AI
speculator i’s trading profits regardless of the forgetting rate that the other informed AI speculator
chooses.
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Appendix

A Proof of Lemma 1

The preferred-habitat investor solves the following portfolio optimization problem for a given pt:

max
z

E
[
−e−η(vt−pt)z/η

]
. (A.1)

Because vt − pt is distributed as N(v − pt, σ2
v ), the first-order condition with respect to z is

0 =
[
(v − pt)− ηzσ2

v
]

e−ηz(v−pt)+(ηz)2σ2
v /2. (A.2)

Thus, the optimal holding, z, is characterized as

z = − 1
ησ2

v
(pt − v). (A.3)

B Proof of Proposition 3.3

Given that st = 0, let JC(χi) denote each informed speculator i’s expected present value of future
profits, when investor i chooses xi,t = χi(vt − v) and all other I − 1 informed investors choose
xC(vt) = χC(vt − v). That is,

JC(χi) =E
[(

vt − pC(yt)
)

χi(vt − v)
]

(B.1)

+ ρJC(χi)P

{
Price trigger is not violated in period t

∣∣∣∣χi, χC
}

+ E

[
T−1

∑
τ=1

ρτπN(vt+τ) + ρT JC(χi)

]
P

{
Price trigger is violated in period t

∣∣∣∣χi, χC
}

,

where pC(·) is the pricing function of market makers in the collusive Nash equilibrium and

pC(yt) = v + λCyt, with λC =
θγC + ξ

θ + ξ2 and γC =
IχC

(IχC)2 + (σu/σv)2 , (B.2)

yt = χi(vt − v) + (I − 1)xC(vt) + ut. (B.3)

The probability of price trigger violation is

P

{
Price trigger is not violated in period t

∣∣∣∣χi, χC
}

=E [P (pt ≤ q(vt)|vt) 1{vt > v}] + E [P (pt ≥ q(vt)|vt) 1{vt < v}]

=E
[
Φ(σ−1

u (χC − χi)(vt − v) + ω)1{vt > v}
]
+ E

[
Φ(σ−1

u (χi − χC)(vt − v) + ω)1{vt < v}
]

,
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where Φ(·) is the CDF of the standard normal distribution.
Evaluating equality (B.1) at χi = χC leads to

JC(χC) =
(

1 − λC IχC
)

χCσ2
v

+ ρJC(χC)Φ(ω)

+
ρ − ρT

1 − ρ
[1 − Φ(ω)]E

[
πN(v)

]
+ ρT JC(χC) [1 − Φ(ω)] . (B.4)

Thus, we can obtain that

JC(χC) =

(
1 − λC IχC

)
χCσ2

v +
ρ − ρT

1 − ρ
[1 − Φ(ω)]E

[
πN(v)

]
1 − ρΦ(ω)− ρT [1 − Φ(ω)]

. (B.5)

The first-order derivative of the both sides of (B.1) with respect to χi, evaluated at χi = χC, is

∇JC(χC) =
[
1 − λC(I + 1)χC

]
σ2

v

+ ρ
[
∇JC(χC)

]
Φ(ω)− ρJC(χC)

1
σu

ϕ(ω)E [|v − v|]

+
ρ − ρT

1 − ρ

1
σu

ϕ(ω)E [|v − v|]E
[
πN(v)

]
+ ρT

[
∇JC(χC)

]
[1 − Φ(ω)] + ρT JC(χC)

1
σu

ϕ(ω)E [|v − v|] , (B.6)

where ϕ(·) is the probability density function of the standard normal distribution.

Because v − v is distributed as N(0, σ2
v ), it follows that E [|v − v|] = σv

√
2
π . Plugging it into

(B.6), we obtain that

∇JC(χC) =
[
1 − λC(I + 1)χC

]
σ2

v

+ ρ
[
∇JC(χC)

]
Φ(ω)− ρJC(χC)

σv

σu
ϕ(ω)

√
2
π

+
ρ − ρT

1 − ρ
E
[
πN(v)

] σv

σu
ϕ(ω)

√
2
π

+ ρT
[
∇JC(χC)

]
[1 − Φ(ω)] + ρT JC(χC)

σv

σu
ϕ(ω)

√
2
π

. (B.7)

The policy variable χC constitutes a collusive Nash equilibrium if speculator i has no incentive
to deviate by setting χi ̸= χC. The first-order condition with respect to χi, characterized by
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∇JC(χC) = 0, leads to

0 =
[
1 − λC(I + 1)χC

]
σ2

v

− ρJC(χC)
σv

σu
ϕ(ω)

√
2
π

+
ρ − ρT

1 − ρ
E
[
πN(v)

] σv

σu
ϕ(ω)

√
2
π

+ ρT JC(χC)
σv

σu
ϕ(ω)

√
2
π

. (B.8)

According to (B.2), as θ → ∞ or as ξ → 0, λC → γC, that is, the market approaches to the
environment of Kyle (1985). In this case, the demand of the preferred-habitat investor is irrelevant.
Because the system is continuous, it is sufficient to show that there is no solution χC ∈ [χM, χN)

in the environment of Kyle (1985), where χN = 1√
I

σu
σv

and χM = 1
I

σu
σv

as a result of λC = γC. Let
χC = χ̂C σu

σv
. Then, we show that there is no solution χ̂C ∈ [χ̂M, χ̂N), with χ̂M = 1

I and χ̂N) = 1√
I
.

In the Kyle case, E
[
πN(v)

]
= σuσv

(I+1)
√

I
. Therefore, equations (B.5) and (B.8) can be rewritten,

respectively, as follows:

JC(χC) =

(
1 − γC IχC

)
χCσ2

v +
ρ − ρT

1 − ρ
[1 − Φ(ω)]

σvσu

(I + 1)
√

I
1 − ρΦ(ω)− ρT [1 − Φ(ω)]

. (B.9)

and

0 =
[
1 − γC(I + 1)χC

]
σ2

v −
[

ρJC(χC)− ρ − ρT

1 − ρ

σvσu

(I + 1)
√

I
− ρT JC(χC)

]
σv

σu
ϕ(ω)

√
2
π

. (B.10)

Therefore, χ̂C is the root of the following quadratic equation:

0 =
[
1 − I(χ̂C)2

] 1
ρ − ρT

−
{

1 − ρ + (ρ − ρT)[1 − Φ(ω)]
}−1

{
χ̂C − 1

(I + 1)
√

I

[
1 + (Iχ̂C)2

]}
ϕ(ω)

√
2
π

,

which can be simplified as

0 = 1 − I(χ̂C)2 − ϑ

{
χ̂C − 1

(I + 1)
√

I

[
1 + (Iχ̂C)2

]}
, (B.11)

where

ϑ =
ϕ(ω)

1−ρ
ρ−ρT + 1 − Φ(ω)

√
2
π

. (B.12)
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Solving the above problem, we obtain

χ̂C =
ϑ ±

∣∣∣−2
√

I + I−1
I+1 ϑ

∣∣∣
−2I + 2ϑ I

√
I

I+1

.

There are three cases.
Case 1: if −2

√
I + I−1

I+1 ϑ ≤ 0 and −2I + 2ϑ I
√

I
I+1 < 0, the larger root is

χ̂C =
ϑ +

(
−2

√
I + I−1

I+1 ϑ
)

−2I + 2ϑ I
√

I
I+1

=
1√

I
= χ̂N ,

and the other root, which is smaller, is given by

χ̂C =
ϑ −

(
−2

√
I + I−1

I+1 ϑ
)

−2I + 2ϑ I
√

I
I+1

=

√
I + ϑ

I+1

−I + ϑ I
√

I
I+1

,

which is negative. Thus, there does not exist a solution χ̂C that lies in [ 1
I , 1√

I
), meaning that the

collusive equilibrium does not exist.
Case 2: if −2

√
I + I−1

I+1 ϑ ≤ 0 and −2I + 2ϑ I
√

I
I+1 > 0, the smaller root is

χ̂C =
ϑ −

(
−2

√
I + I−1

I+1 ϑ
)

−2I + 2ϑ I
√

I
I+1

=
1√

I
= χ̂N ,

and the other root, which is larger, should be greater than χ̂N . Thus, there does not exist a solution
χ̂C that lies in [ 1

I , 1√
I
), meaning that the collusive equilibrium does not exist.

Case 3: if −2
√

I + I−1
I+1 ϑ > 0. In this case, we can prove that

−2I + 2ϑ
I
√

I
I + 1

=
√

I
[
−2

√
I + 2ϑ

I
I + 1

]
>

√
I
[
− I − 1

I + 1
ϑ + 2ϑ

I
I + 1

]
> 0.

Thus, the larger root is

χ̂C =
ϑ +

(
−2

√
I + I−1

I+1 ϑ
)

−2I + 2ϑ I
√

I
I+1

=
1√

I
= χ̂N .

The smaller root is

χ̂C =
ϑ −

(
−2

√
I + I−1

I+1 ϑ
)

−2I + 2ϑ I
√

I
I+1

=

√
I + ϑ

I+1

−I + ϑ I
√

I
I+1

.

For χ̂C to lie in [ 1
I , 1√

I
), we need χ̂C ≥ 1/I, which implies

1
I + 1

√
I − 1√
I + 1

ϑ ≤ 1,
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Thus, if ϑ ∈
(

2
√

I I+1
I−1 , (I + 1)

√
I+1√
I−1

]
, there exists a collusive equilibrium. To rule out this, we either

need ϑ ≤ 2
√

I I+1
I−1 (to rule out case 3) or ϑ > (I + 1)

√
I+1√
I−1

(to ensure the smaller root χ̂C < 1/I in
case 3).

C Proof of Proposition 3.4

As θ → 0 or as ξ → ∞, λC → 1/ξ, that is, the market approaches to the environment where
prices are primarily determined by market clearing conditions. In this case, the demand of the
preferred-habitat investor plays an important role. In particular, when θ = 0 (or ξ → ∞), the
market maker’s pricing rule is λC = 1/ξ.

Because the system is continuous, it is sufficient to show that there is a solution χC ∈ [χM, χN)

in the environment with λC = 1/ξ, where χN = ξ
I+1 , χM = ξ

2I , and E
[
πN(v)

]
= ξσ2

v
(I+1)2 . In this

environment, equations (B.5) and (B.8) can be rewritten, respectively, as follows:

JC(χC) =

(
1 − ξ−1 IχC

)
χCσ2

v +
ρ − ρT

1 − ρ
[1 − Φ(ω)]

ξσ2
v

(I + 1)2

1 − ρΦ(ω)− ρT [1 − Φ(ω)]
(C.1)

and

0 =
[
1 − ξ−1(I + 1)χC

]
σ2

v −
[

ρJC(χC)− ρ − ρT

1 − ρ

ξσ2
v

(I + 1)2 − ρT JC(χC)

]
σv

σu
ϕ(ω)

√
2
π

. (C.2)

Therefore, χC is the root of the following quadratic equation:

0 = 1 − ξ−1(I + 1)χC − K
[(

1 − ξ−1 IχC
)

χC − ξ

(I + 1)2

]
,

where

K =
σv

σu
ϑ =

σv

σu

ϕ(ω)
1−ρ

ρ−ρT + 1 − Φ(ω)

√
2
π

. (C.3)

Solving the above problem, we obtain

χ̂C =
K + I+1

ξ ±
∣∣∣K(I−1)

I+1 − I+1
ξ

∣∣∣
2KI

ξ

.

There are two cases.
Case 1: if K(I−1)

I+1 − I+1
ξ < 0, then the smaller root is

χC =
K + I+1

ξ +
(

K(I−1)
I+1 − I+1

ξ

)
2KI

ξ

= χN .
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The larger root must be greater than χN . Thus, there does not exist a collusive equilibrium. To
rule out this case, we need Kξ > (I+1)2

I−1 , which can be achieved by choosing a sufficiently small
σu/σv according to (C.3).

Case 2: if K(I−1)
I+1 − I+1

ξ > 0, i.e., Kξ > (I+1)2

I−1 , then the larger root is

χC =
K + I+1

ξ +
(

K(I−1)
I+1 − I+1

ξ

)
2KI

ξ

= χN .

The smaller root is

χC =
K + I+1

ξ −
(

K(I−1)
I+1 − I+1

ξ

)
2KI

ξ

=
Kξ
I+1 + I + 1

KI
. (C.4)

To have a valid collusive equilibrium, we need

Kξ
I+1 + I + 1

KI
≥ ξ

2I
,

which implies

Kξ ≤ 2(I + 1)2

I − 1
,

meaning that σu/σv cannot be too small.
In summary, for given parameters T, ρ, ω, and I, we have a range of σu/σv to sustain the

collusive equilibrium. That is, σu/σv has to be sufficiently small (in order to rule out case 1) but
cannot be too small (to ensure the existence of the collusive equilibrium in case 2). That is, σu/σv

should be determined such that

Kξ ∈
(
(I + 1)2

I − 1
,

2(I + 1)2

I − 1

]
. (C.5)

D Proof of Proposition 3.6

We prove the proposition for the environment with θ = 0, so the results derived in Appendix C
can be directly used. More general environments with θ > 0 can be proved similarly with more
complex derivations.

Without loss of generality, we restrict the analysis to the parameter choices such that the
collusive equilibrium exists, meaning that condition (C.5) is satisfied. Thus, χC is given by (C.4).

Proof for the profit ratio ∆C. The expected profit associated with χC is

πC = (1 − ξ−1 IχC)χCσ2
v .

71



Thus, πC − πN is as follows:

πC − πN =

(
I

I + 1
− I + 1

Kξ

)(
ξ

I(I + 1)
+

I + 1
KI

)
σ2

v −
ξσ2

v
(I + 1)2 .

The expected profit associated with χM is

πM = (1 − ξ−1 IχM)χMσ2
v .

Thus, πM − πN is as follows:

πM − πN =
ξσ2

v
4I

− ξσ2
v

(I + 1)2 = ξ
(I − 1)2

4I(I + 1)2 σ2
v .

Thus, ∆C is

∆C =
4

(I − 1)2

(
I − (I + 1)2

Kξ

)(
1 +

(I + 1)2

Kξ

)
− 4I

(I − 1)2 .

Because Kξ ≤ 2(I+1)2

I−1 , ∆C is increasing in ξ and K. Moreover, K = ϕ(ω)
1−ρ

ρ−ρT +1−Φ(ω)

σv
σu

√
2
π is increasing

in ρ and decreasing in σu/σv. Thus, ∆C is increasing in ρ and decreasing in σu/σv.
To show K is increasing in ρ, it is sufficient to prove 1−ρ

ρ−ρT is decreasing in ρ, which is equivalent
to show that f (ρ) = log(1 − ρ)− log(ρ − ρT) is decreasing in ρ. The first derivative is

f (ρ)′ = − 1
1 − ρ

− 1 − TρT−1

ρ − ρT =
ρT − 1 + TρT−1(1 − ρ)

(1 − ρ)(ρ − ρT)
.

In order to have f (ρ)′ ≤ 0, we need h(ρ, T) = ρT − 1 + TρT−1(1 − ρ) < 0. Note that h(ρ, 1) = 0.
Thus, it is sufficient to show that h(ρ, T) is decreasing in T for all ρ. The first derivative is

∂h(ρ, T)
∂T

=ρT−1 [ρ log(ρ) + 1 − ρ + T(1 − ρ) log(ρ)]

≤ρT−1 [ρ log(ρ) + 1 − ρ + (1 − ρ) log(ρ)]

=ρT−1 [1 − ρ + log(ρ)]

<0.

Next, we show that ∆C is decreasing in I. We can rewrite ∆C as follows

∆C =
4(I + 1)2

Kξ(I − 1)2

[
I − 1 − (I + 1)2

Kξ

]
.
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We have ∆C > 0 because Kξ > (I+1)2

I−1 . The first derivative is

∂∆C

∂I
=

4
Kξ

[
2
(

I + 1
I − 1

)(
− 2
(I − 1)2

)(
I − 1 − (I + 1)2

Kξ

)
+

(
I + 1
I − 1

)2 (
1 − 2(I + 1)

Kξ

)]

=
4

Kξ

(I + 1)(I − 3)
(I − 1)2

[
1 − 2(I + 1)2

Kξ(I − 1)

]
.

The term 1 − 2(I+1)2

Kξ(I−1) < 0 because Kξ ≤ 2(I+1)2

I−1 . Thus, ∂∆C

∂I ≤ 0 for I ≥ 3.

Proof for the price informativeness IC. The price informativeness IC is

IC = log
[(

IχC
)2

(σv/σu)
2
]
= 2 log

(
ξ

I + 1
+

I + 1
K

)
+ 2 log

(
σv

σu

)
.

The price informativeness IM is

IM = log
[(

IχM
)2

(σv/σu)
2
]
= 2 log

(
ξ

2
σv

σu

)
.

Thus, the relative price informativeness IC/IM is

IC

IM =
log
(

ξ
I+1

σv
σu

+ I+1
K

σv
σu

)
log
(

ξ
2

σv
σu

) . (D.1)

According to (D.1), IC/IM is increasing in I if Kξ < (I + 1)2, which is satisfied for I ≥ 3 because
of condition (C.5) for the existence of the collusive equilibrium. Moreover, IC/IM is decreasing
in K. Thus, IC/IM is decreasing in ρ because K is increasing in ρ.

To study the effect of σu/σv, substituting out K using (C.3), equation (D.1) can be rewritten as

IC

IM =

log

(
ξ

I+1
σv
σu

+ (I + 1)
1−ρ

ρ−ρT +1−Φ(ω)

ϕ(ω)

√
π
2

)
log
(

ξ
2

σv
σu

) .

Obviously, IC/IM is increasing in σu/σv and decreasing in ξ, because ξ
I+1

σv
σu

< ξ
2

σv
σu

and (I +

1)
1−ρ

ρ−ρT +1−Φ(ω)

ϕ(ω)

√
π
2 > 0.

Proof for the mispricing EC. The mispricing EC is

EC =

∣∣∣∣ pC(vt)− EC[vt|yt]

EC[vt|yt]− v

∣∣∣∣ = ∣∣∣∣λC − γC

γC

∣∣∣∣ = ∣∣∣∣ 1
γC

(
θγC + ξ

θ + ξ2 − γC
)∣∣∣∣ = ∣∣∣∣ ξ(1 − ξγC)

γC(θ + ξ2)

]
.

73



Consider the case where θ = 0 and ξ is sufficiently large, i.e., ξ > 1/γC. Thus,

EC = 1 − 1
γCξ

= 1 − IχC

ξ
− σ2

u
ξσ2

v

1
IχC .

Substituting out χC using (C.4), we obtain

EC = 1 −
[

1
I + 1

+
I + 1
Kξ

+
σ2

u
ξσ2

v

K(I + 1)
Kξ + (I + 1)2

]
. (D.2)

Obviously, EC increases as ξ increases. Moreover,

∂EC

∂I
=−

[
1

Kξ
− 1

(I + 1)2 +
σ2

uK
σ2

v ξ
× Kξ − (I + 1)2

[Kξ + (I + 1)2]2

]

=−
[
(I + 1)2 − Kξ

] [ 1
Kξ(I + 1)2 − σ2

uK
σ2

v ξ

1

[Kξ + (I + 1)2]2

]
.

Because Kξ ≤ 2(I+1)2

I−1 (equation (C.5)), it is clear that (I + 1)2 − Kξ > 0 for I ≥ 3. Moreover, to

ensure that 1
Kξ(I+1)2 − σ2

uK
σ2

v ξ
1

[Kξ+(I+1)2]
2 ≥ 0, we need

Kξ + (I + 1)2 ≥ σu

σv
K(I + 1).

Because Kξ > (I + 1)2/(I − 1) (equation (C.5)), it is sufficient to have

(I + 1)2/(I − 1) + (I + 1)2 ≥ σu

σv
K(I + 1),

which implies ϑ < I(I + 1)/(I − 1), which is satisfied when ω is not too large or ρ is not very
close to 1 (see equation (B.12) for the dependence of ϑ on ω and ρ). Thus, ∂EC

∂I < 0 if I ≥ 3 and
ϑ < I(I + 1)/(I − 1).

Substituting out K using (C.3), equation (D.3) can be written as

EC = 1 −
[

1
I + 1

+
I + 1
ϑξ

σu

σv
+

σu

ξσv

ϑ(I + 1)
ϑξσv/σu + (I + 1)2

]
.

Thus, EC is decreasing in σu/σv. Moreover, we can further rewrite the above equation as follows:

EC =
I

I + 1
− I + 1

ξ

σu

σv

[
1
ϑ
+

ϑ

ϑξσv/σu + (I + 1)2

]
.

Obviously, EC is increasing in ϑ if ϑ < I + 1. We have shown that K = σv
σu

ϑ is increasing in ρ. Thus,
EC is increasing in ρ if ϑ < I + 1, which is satisfied when ω is not too large or ρ is not very close
to 1 (see equation (B.12) for the dependence of ϑ on ω and ρ).
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Proof for the market liquidity LC. The market liquidity LC is

LC =
1

∂|zt + yt|/∂ut
=

1
1 − ξλC .

In the environment with θ = 0, market liquidity is LC = 1
|1−ξ 1

ξ |
= ∞ because prices are determined

by market clearing conditions, which are not affected by the noise order flow ut in expectation.
Thus, to analyze how market liquidity depends on parameter values, we consider an environment
with θ ≈ 0 rather than θ = 0. In this environment, the market liquidity LC is

LC =
1∣∣∣1 − ξ θγC+ξ

θ+ξ2

∣∣∣ ≈ 1∣∣∣1 − ξ θγC+ξ
ξ2

∣∣∣ = ξ

θγC =
ξ

θ

(
IχC +

σ2
u

σ2
v

1
IχC

)
.

Substituting out χC using (C.4), we obtain

LC =
ξ

θ

[
ξ

I + 1
+

I + 1
K

+
σ2

u
σ2

v

K(I + 1)
Kξ + (I + 1)2

]
. (D.3)

The market liquidity in the perfect cartel equilibrium, LM, is

LM =
ξ

θ

(
IχM +

σ2
u

σ2
v

1
IχM

)
=

ξ

θ

(
I

ξ

2I
+

σ2
u

σ2
v

1

I ξ
2I

)
=

1
θ

(
ξ2

2
+

2σ2
u

σ2
v

)
.

Thus, the relative market liquidity LC/LM

LC

LM =

ξ2

I+1 +
ξ(I+1)

K + σ2
u

σ2
v

Kξ(I+1)
Kξ+(I+1)2

ξ2

2 + 2σ2
u

σ2
v

. (D.4)

Clearly, LC/LM is decreasing in ξ if σu/σv is sufficiently small; LC/LM is increasing in σu/σv if ξ

is sufficiently large.
In equation (D.4), the first derivative with respect to K is

∂LC/LM

∂K
=

ξ
ξ2

2 + 2σ2
u

σ2
v

[
− I + 1

K2 +
σ2

u
σ2

v

(I + 1)3

[Kξ + (I + 1)2]2

]

=
ξ(I + 1)

ϑ2
(

ξ2

2 + 2σ2
u

σ2
v

) σ2
u

σ2
v

[
−1 +

[
(I + 1)ϑ

Kξ + (I + 1)2

]2
]

.

Thus, ∂LC/LM

∂K < 0 if (I+1)ϑ
Kξ+(I+1)2 < 1, which is achieved if

ϑ <
Kξ

I + 1
+ I + 1 <

2(I + 1)2/(I − 1)
I + 1

+ I + 1 =
(I + 1)2

I − 1
.

where the second inequality is due to condition (C.5). We have shown that K is increasing in ρ.
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Thus, ∂LC/LM is decreasing in ρ if ϑ < (I + 1)2/(I − 1), which is satisfied when ω is not too
large or ρ is not very close to 1 (see equation (B.12) for the dependence of ϑ on ω and ρ).

In equation (D.4), the first derivative with respect to I is

∂LC/LM

∂I
=

ξ
ξ2

2 + 2σ2
u

σ2
v

[
− ξ

(I + 1)2 +
1
K
+

σ2
u

σ2
v

K[Kξ + (I + 1)2]− 2K(I + 1)2

[Kξ + (I + 1)2]2

]

=
ξ

K(I + 1)2
(

ξ2

2 + 2σ2
u

σ2
v

) [(I + 1)2 − Kξ
] [

1 −
[

(I + 1)ϑ
Kξ + (I + 1)2

]2
]

.

Thus, similarly, we can prove that if ϑ < (I + 1)2/(I − 1), then 1 −
[

(I+1)ϑ
Kξ+(I+1)2

]2
> 0. Moreover,

condition (C.5) implies that (I + 1)2 − Kξ > 0 for I ≥ 3. Therefore, ∂LC

∂I > 0 if I ≥ 3 and
ϑ < (I + 1)2/(I − 1).

E Environments with Efficient Prices

In this appendix section, we study informed AI speculators’ behavior in the baseline economic
environment except for setting ξ = 0, which essentially means that the preferred-habitat investor
does not exist. Thus, the market maker sets prices purely for price discovery, i.e., pt = E[vt|yt].
This economic environment is similar to Kyle (1985) except for having I = 2 informed speculators.
Proposition 3.3 in Section 3 indicates that implicit collusion cannot be sustained by any price-
trigger strategies in this environment with efficient prices.

Figure A presents the average results across N = 1, 000 simulation sessions with informed
AI speculators. The blue solid lines in panels A and B show that informed AI speculators
can attain an average ∆C of 0.85 and their average profit is about 5% higher than that in the
theoretical benchmark of the noncollusive equilibrium. As discussed in Section 5.2, collusion in
this environment is achieved through homogenized learning biases. Similar to the property of
the Kyle (1985) model, the profits of informed speculators in the theoretical benchmark of the
noncollusive Nash equilibrium and the perfect cartel equilibrium are linear in the noise trading
risk log(σu/σv). Thus, the red dash-dotted and black dotted lines in panels A and B are flat.
Interestingly, the collusive equilibrium formed by informed AI speculators also has a constant
∆C and πC/πN as log(σu/σv) varies along the x-axis, exhibiting a similar scaling property with
respect to log(σu/σv). Panel C shows that the informed AI speculators’ order sensitivity to asset
value χ̂C increases exponentially with log(σu/σv) and linearly with σu/σv. This scaling property
with respect to log(σu/σv) is similar to that in the theoretical benchmarks of the noncollusive
Nash equilibrium and the perfect cartel equilibrium, a property that also holds in the Kyle (1985)
model.

Panel D shows that due to collusion, price informativeness in the environment with informed
AI speculators is lower than that in the theoretical benchmark of the noncollusive Nash equilibrium,
but higher than that in the theoretical benchmark of the perfect cartel equilibrium. Moreover, as in
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Note: We consider the economic environment with efficient prices as in Kyle (1985). That is, we set ξ = 0, implying that
the asset’s price pt is determined to minimize pricing errors, with pt = E[vt|yt]. The blue solid line plots the average
values of ∆C, πC/πN , χ̂C, IC/IM, LC/LM, and EC across N = 1, 000 simulation sessions as log(σu/σv) varies. The
red dash-dotted and black dotted lines represent the theoretical benchmarks of the noncollusive Nash equilibrium and
perfect cartel equilibrium, respectively. The other parameters are set according to the baseline economic environment
described in Section 4.7, except for ξ = 0.

Figure A: Implications of noise trading risks in the environment with ξ = 0.

the Kyle (1985) model, price informativeness remains unchanged as log(σu/σv) varies along the
x-axis. Panel E shows that market liquidity is equal to 1 in this environment with efficient prices.
This can be directly seen from equation (4.11). In the absence of the preferred-habitat investor, the
market maker is the counterparty for informed speculators and the noise trader, and its inventory
is equal to −yt ≡ −∑I

i=1 xi,t − ut. Thus, the sensitivity of the market maker’s inventory to noise
order flows is 1, which holds regardless of the level of noise trading risks or whether informed
speculators collude. Panel F shows that mispricing in this environment is 0 because, by definition,
prices are efficient, with pt = E[vt|yt].
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F Q-Learning Market Maker

In the baseline economic environment, the market maker analyzes historical data to estimate the
pricing rule (ese Section 4.2). In this appendix section, we consider the market maker adopting
Q-learning algorithms to learn the pricing rule. All the results presented in the main text are
similar; they do not depend on whether the market maker determines the pricing rule using
statistical learning or Q-learning algorithms.

Below, we describe the Q-learning algorithm of the market maker. We consider the market
maker adopting linear policies to price assets given the combined order flow yt from informed
speculators and the noise trader:

pt = vMM
t + λMM

t yt, (F.1)

where vMM
t and λMM

t are the market maker’s decisions learned from its Q-learning algo-
rithm. Specifically, the market maker’s state variable is st = ∅ and action variables are
at = {vMM

t , λMM
t } ∈ V× Λ. The market maker updates its Q-matrix according to the following

learning equation:

Q̂MM
t+1 (v

MM
t , λMM

t ) =(1 − αMM)Q̂MM
t (st, at) + α

[
(yt − ξ(vMM

t − v + λMM
t yt))

2

+θ(vMM
t + λMM

t yt − vt)
2 + ρMM min

v′∈V,λ′∈Λ
Q̂MM

t (v′, λ′)

]
, (F.2)

where the reward in period t is

(yt + zt)
2 + θ(pt − vt)

2 =(yt − ξ(pt − v))2 + θ(pt − vt)
2

=(yt − ξ(vMM
t − v + λMM

t yt))
2 + θ(vMM

t + λMM
t yt − vt)

2. (F.3)

The optimal choices of vMM
t and λMM

t are learned to minimize the Q-matrix. Similar to informed AI
speculators’ Q-learning algorithms, the market maker also conducts exploration with probability
εMM

t and exploitation with probability 1 − εMM
t . In the exploration mode, the market maker

randomly chooses actions v and λ over the set V× Λ.
To implement the Q-learning algorithm for the market maker, we construct discrete grid

for vMM
t and λMM

t . Specifically, we discretize the intervals [(1 − κ)vMM, (1 + κ)vMM] and [(1 −
κ)λMM, (1 + κ)λMM] into nv and nλ equally spaced grid points, i.e., V = {vMM

1 , · · · , vMM
nv

} and
Λ = {λMM

1 , · · · , λMM
nλ

}. The parameters vMM and λMM correspond to the optimal values in the
theoretical benchmark of the noncollusive equilibrium. The parameter κ > 0 ensures that the
values of vt and λt chosen by the market maker can be different from the theoretical values, vMM

and λMM.
For grid (vMM

k , λMM
j ) ∈ V× Λ, we initialize the market maker’s Q-matrix as follows:

Q̂MM
0 (vMM

k , λMM
j ) =

1
1 − ρMM E

[
(yt − ξ(vMM

k − v + λMM
j yt))

2 + θ(vMM
k + λMM

j yt − vt)
2
]
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Substituting out yt = IχN(vt − v) + ut, we obtain

Q̂MM
0 (vMM

k , λMM
j ) =

1
1 − ρMM

[
(1 − ξλMM

j )2((IχNσv)
2 + σ2

u) + ξ2(vMM
k − v)2

]
+

θ

1 − ρMM

[
(vMM

k − v)2 + (λMM
j IχN − 1)2σ2

v + (λMM
j σu)

2
]

The exploration rate is εMM
t = e−βMMt, similar to equation (4.5). We set the parameters at

βMM = 10−4, αMM = 0.1, ρMM = 0.95, κ = 0.5, and nv = nλ = 31. The results are similar if we
choose different parameter values.

G A Technical Appendix for Learning Biases

In this appendix, we explain why learning biases can lead informed AI speculators to exhibit
collusive behavior from a technical perspective. We proceed in three steps. First, in Subsection
G.1, we show that learning biases are significant when noise trading risks are high because in
this case, the estimation of the Q-matrix cannot properly account for the distribution of the noise
order flow ut due to the failure of the law of large numbers. Second, in Subsection G.2, we show
that due to biased learning, the estimated Q-values associated with larger order flows have a
larger unconditional variance. Third, in Subsection G.3, we show that large order flows are less
likely to be included in the optimal strategies adopted by informed AI speculators after their
Q-learning algorithms converge. In other words, biased learning would more likely lead informed
AI speculators to optimally trade with small order flows, which coincide with the order flows
adopted in the theoretical benchmark of the collusive Nash equilibrium. Taken together, we show
that in the presence of high noise trading risks, collusive outcomes emerge due to informed AI
speculators’ homogenized learning biases.

G.1 Biased Learning When Noise Trading Risks are High

First, we explain that when noise trading risks are high, there exist learning biases for the Q-matrix
due to the failure of the law of large numbers.

Learning biases are caused by a generic feature of RL algorithms. As discussed in Section
2, Q-learning algorithms cannot take expectations due to the absence of knowledge about the
underlying economic environment (e.g., the distribution of the noise order flow ut). In each period
t, the algorithm updates the value of one single state-action pair (s, xi) of the Q-matrix according
to the currently realized profit πi,t (see equation (2.4)) rather than the expected profit E[πi,t|s, xi]

as in a rational-expectations framework. Biases may exist in Q-value estimation because updating
the Q-matrix sequentially based on past realized profits may not accurately reflect the expected
profit, due to the failure of the law of large numbers.

To illustrate this point, we focus on a particular state-action pair (s, xi) that has been visited T
times in the past. Let τ = 1, 2, ..., T be the τ-th visit to the state-action pair (s, xi). Let t(τ) be the
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period for the τ-th time that the Q-learning algorithm visits the state-action pair (s, xi). According
to Equation (2.4), in each period t, the Q-learning algorithm only updates the state-action pair
of the Q-matrix that the algorithm visits. Thus, the state-action pair (s, xi) has been updated T
times in the past, and these updates occur in periods t(τ) for τ = 1, 2, ..., T. In other words, for
each τ = 1, 2, ..., T, the value of Q̂i,t(s, xi) is a constant and equal to Q̂i,t(τ)+1(s, xi) from period
t = t(τ) + 1 to period t = t(τ + 1) and gets updated with a new value, Q̂i,t(τ+1)+1(s, xi), in period
t(τ + 1) + 1.

Based on equation (2.4), for the T-th visit to the state-action pair (s, xi), we have

Q̂i,t(T)+1(s, xi) = (1 − α)Q̂i,t(T)(s, xi) + α

[
(vt(T) − pt(T))xi + ρ max

x′∈X
Q̂i,t(T)(st(T)+1, x′)

]
(G.1)

For the (T − 1)-th visit to the state-action pair (s, xi), we have

Q̂i,t(T−1)+1(s, xi) = (1− α)Q̂i,t(T−1)(s, xi)+ α

[
(vt(T−1) − pt(T−1))xi + ρ max

x′∈X
Q̂i,t(T−1)(st(T−1)+1, x′)

]
(G.2)

..., and for the 1-st visit to the state-action pair (s, xi), we have

Q̂i,t(1)+1(s, xi) = (1 − α)Q̂i,t(1)(s, xi) + α

[
(vt(1) − pt(1))xi + ρ max

x′∈X
Q̂i,t(1)(st(1)+1, x′)

]
(G.3)

Because the Q-value for the state-action pair (s, xi) does not change from t = t(τ) + 1 to
t = t(τ + 1), we have Q̂i,t(τ)+1(s, xi) = Q̂i,t(τ+1)(s, xi), for τ = 1, 2, ..., T − 1. Thus, combining above
equations, we derive

Q̂i,t(T)+1(s, xi) =
T−1

∑
τ=0

α(1 − α)τ

[
(vt(T−τ) − pt(T−τ))x + ρ max

x′∈X
Q̂i,t(T−τ)(st(T−τ)+1, x′)

]
+ (1 − α)TQ̂i,0(s, xi). (G.4)

As T → ∞, we can omit the last term and rewrite the above equation as

Q̂i,t(T)+1(s, xi) =
T

∑
τ=0

α(1 − α)τ

[
(vt(T−τ) − pt(T−τ))xi + ρ max

x′∈X
Q̂i,t(T−τ)(st(T−τ)+1, x′)

]
. (G.5)

By substituting out pt(T−τ), the above equation becomes

Q̂i,t(T)+1(s, xi) =
T

∑
τ=0

α(1 − α)τ[vt(T−τ) − v − λ(yt(T−τ) − ut(T−τ))]xi

− αλxi

T

∑
τ=0

(1 − α)τut(T−τ) + ρ
T

∑
τ=0

max
x′∈X

Q̂i,t(T−τ)(st(T−τ)+1, x′). (G.6)

The term αλxi ∑T
τ=0(1 − α)τut(T−τ) represents a stochastic term that depends on the noise order

flow ut(T−τ). With E[ut] = 0, the estimation for the limit value of Q̂i,t(T)+1(s, xi) is unbiased only
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if αλxi ∑T
τ=0(1 − α)τut(T−τ) = 0 as T → ∞20, which occurs if α → 0. Thus, for any α > 0, the term

αλxi ∑T
τ=0(1− α)τut(T−τ) would bias the estimate of Q̂i,t(T)+1(s, xi). This is due to the failure of the

law of large numbers because in general, as T → ∞, we have αλxi ∑T
τ=0(1− α)τut(T−τ) ̸= αλxiE[ut]

unless α → 0.
The magnitude of learning biases depends on the importance of the term αλxi ∑T

τ=0(1 −
α)τut(T−τ) relative to other terms in equation (G.6), as T → ∞. Specifically, learning biases are
absent when there is no noise trading risk (i.e., σu/σv = 0) or when α ≈ 0. Learning biases become
more significant when σu/σv is higher, λ is higher, ρ is lower, or α is higher.

G.2 Complementarity Between Informed AI Speculators’ Order and Noise Order

Second, we show that due to biased learning, the estimated Q-values associated with larger order
flows have larger unconditional variances.

To begin with, we decompose the per-period profit (vt − pt)xi that an informed speculator i
receives when choosing order flow xi ∈ X in period t into two parts:

(vt − pt)xi = [vt − v − λ(yt − ut)] xi − λxiut. (G.7)

The term [vt − v − λ(yt − ut)] xi captures the profit determined by the asset’s fundamental value
vt and the term λxiut captures the profit determined by the noise order flow ut. Through the
term λxiut in equation (G.7), there exists complementarity between the informed speculator’s
order flow xi and the noise order flow ut in determining per-period profits. This complementarity
implies that, choosing larger order flows (i.e., a larger absolute value |xi|) would amplify the
impact of the noise order flow ut on per-period profits.

Because the estimated Q-value is the accumulated discounted per-period profits realized in
the past, the complementarity between xi and ut in equation (G.7) would propagate to equation
(G.6), captured by the term αλxi ∑T

τ=0(1 − α)τut(T−τ). In the absence of learning biases (i.e., when
α → 0), we have αλxi ∑T

τ=0(1 − α)τut(T−τ) ≈ αλxiE[ut] = 0 as T → ∞, so that the unbiased
estimate of the Q-value is not affected by the complementarity. However, as long as α > 0, we
would have αλxi ∑T

τ=0(1 − α)τut(T−τ) ̸= 0, and thus, the estimated limit Q-value is biased, due to
the failure of the law of large numbers. The biased learning implies that the estimated Q-value of
an informed AI speculator’s particular order flow xi is path dependent, crucially depending on
the realized noise order flow ut in the past periods when the informed AI speculator chose xi.

Thus, in the presence of learning biases, there exists complementarity between xi and ut in
determining the estimated Q-value. This complementarity implies that the estimated Q-values
associated with larger order flows have larger unconditional variances.

20To see why unbiasedness requires αλxi ∑T
τ=0(1 − α)τut(T−τ) = 0 as T → ∞, note that the Q-matrix is essentially a

precursor of the value function (i.e., Vi(s) ≡ maxx′∈X Qi(s, x′), see equation (2.1)), which represents the discounted
“expected” profits. In our model, the noise order ut should have no direct effect on an informed speculator’s “expected”
profits except for affecting its order flow xi,t.
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G.3 Impacts of Biased Learning on Optimal Strategies

Third, we show that large order flows are less likely to be the optimal strategies adopted by
informed AI speculators after their Q-learning algorithms converge. In other words, learning biases
would more likely lead informed AI speculators to optimally choose small order flows, which
coincide with those order flows in the theoretical benchmark of the collusive Nash equilibrium.

Before discussing why learning biases make the choice of large order flows less likely, it is
useful to clarify that although informed AI speculators start their Q-learning algorithms with a
mix of the exploration mode and the exploitation mode, it must be the case that the exploration
rate drops to zero at some point before Q-learning algorithms to converge. In other words, in a
long period of time right before Q-learning algorithms converge, informed AI speculators must
be in pure exploitation mode, choosing the order flows that maximize their Q-values rather than
choosing order flows randomly. Therefore, without loss of generality, we focus on the exploitation
mode in our discussions below.

To fix the idea, consider a simple setting in which there is a single state s and each informed AI
speculator i’s order flow xi can take two different values, xi = xS, xL, with 0 < xS < xL, meaning
that xL is a large order flow and xS is a small order flow. As discussed above, in the presence
of learning biases caused by noise trading risks, there is complementarity between xi and ut in
determining the estimated Q-value. Thus, relative to the estimated Q-value associated with the
small order flow xS, the estimated Q-value associated with the large order flow xL has a large
unconditional variance (see equation (G.6)). Let [Q(s, xS), Q(s, xS)] and [Q(s, xL), Q(s, xL)] be the
99.9% confidence interval of the estimated Q-value for order flows xS and xL, respectively. Thus,
we have [Q(xS), Q(s, xS)] ⊂ [Q(s, xL), Q(s, xL)].

Because the informed AI speculator is purely in the exploitation mode, in any period t, its
order flow is determined according to argmaxxS,xL

{
Q̂i,t(s, xS), Q̂i,t(s, xL)

}
. There are two cases,

either Q̂i,t(s, xL) > Q̂i,t(s, xS) or Q̂i,t(s, xL) <= Q̂i,t(s, xS). In the first case, for τ > [t, t′], the
informed AI speculator would keep choosing xL to update Q̂i,τ(s, xL) while Q̂i,τ(s, xS) remains
unchanged at Q̂i,t(s, xS). The period t′ > t is the first passage time for Q̂i,t′(s, xL) <= Q̂i,t′(s, xS).
From period t′ on, the informed AI speculator switches from choosing the large order flow xL to
choosing the small order flow xS, and fall into the second case as described below.

In the second case, for τ > [t, t′], the informed AI speculator would keep choosing xS to
update Q̂i,τ(s, xS) while Q̂i,τ(s, xL) remains unchanged at Q̂i,t(s, xL). The period t′ > t is the first
passage time for Q̂i,t′(s, xL) > Q̂i,t′(s, xS). From period t′ on, the informed AI speculator switches
from choosing the small order flow xS to choosing the large order flow xL, and fall into the first
case as described above.

These two cases alternate over time. In one simulation session, given our convergence
criterion specified in Section 4.8 (i.e., stability of optimal strategy for T = 100, 000 consecutive
periods), eventually, the optimal strategy will converge to xS with probability P and xL with
probability 1 − P. We have p > 0.5 because Q(s, xL) < Q(s, xS). The probability P is higher if
the estimated Q-value associated with the order flow xL has a larger probability to be in the
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interval [Q(s, xL), Q(s, xS)], which happens when noise trading risks are higher (i.e., higher σu/σv

so the magnitude of learning biases is larger) or the difference in order flows is larger (i.e., larger
xL − xS). This explains why learning biases make the choice of large order flows less likely.

According to our model in Section 3, the sensitivity of informed speculators’ order flow to
the asset’s value vt is lower under collusion, i.e., χM ≤ χC < χN . Because informed speculator i’s
order xi,t is xi,t = χ(vt − v), the absolute value of its order flows satisfies |xM

i,t | ≤ |xC
i,t| < |xN

i,t| for
any vt, indicating that informed speculators would collude if they adopt more conservative (i.e.,
choosing order flows with smaller magnitude), rather than more aggressive, trading strategies.
Taken together, it is clear that in the presence of high noise trading risks, homogenized learning
biases lead to collusive outcomes.
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